Plant-Associated Biofilms

Springer Science and Business Media LLC - Tập 2 - Trang 99-108 - 2003
María Antonia Molina1, Juan-Luis Ramos1, Manuel Espinosa-Urgel1
1Department of Plant Biochemistry and Molecular and Cellular Biology, Estacion Experimental del Zaidin, CSIC, Spain

Tóm tắt

Bacteria colonizing plant surfaces are of great importance in agriculture, having either a negative (pathogens surviving on leaf surfaces) or a positive (beneficial root-colonizing bacteria) role. Plant-associated populations develop in a way that shows similarities to that observed in biofilm formation on abiotic surfaces, and certain genetic determinants are common to both processes. The mechanisms involved in biofilm formation and maintenance on plant surfaces, and their implications for agriculture will be discussed, both in terms of pathogenesis processes and the potential use of bacteria for biocontrol purposes.

Tài liệu tham khảo

Bashan Y (1986) Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J. Gen. Microbiol. 132:3407–3414 Beattie GA & Lindow SE (1994) Survival, growth and localization of epiphytic tness mutants of Pseudomonas syringae on leaves. Appl. Environ. Microbiol. 60:3790–3798 Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N & Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomo-nas fluorescens WCS365 populations expressing three differ-ent autofluorescent proteins in the rhizosphere:New perspectives for studying microbial communities. Mol. Plant-Microbe Interact. 13:1170–1176 Buell CR & Anderson AJ (1992) Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomo-nas putida, a beneficial fluorescent pseudomonad. Mol. Plant-Microbe Interact. 5:154–162 Bull CT, Weller DM & Thomashow LS (1991) Relationship between root colonisation and suppression of Gaeumanno-myces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathol. 81:954–959 Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC & Lugtenberg BJJ (2000) Root colonisation is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlorora-phis PCL1391. Mol. Plant-Microbe Interact. 13:1340–1345 Davey ME & O'Toole GA (2000) Microbial bio lms:From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847–867 DeFlaun MF, Tanzer AS, McAteer AL, Marshall B & Levy SB (1990) Development of an adhesion assay and characteriza-tion of an adhesion-de cient mutant of Pseudomonas fluo-rescens. Appl. Environ. Microbiol. 56:112–119 DeFlaun MF, Marshall B, Kulle E-P & Levy SB (1994) Tn5 insertion mutants of Pseudomonas fluorescens defective in adhesion to soil and seeds. Appl. Environ. Microbiol. 60: 2637–2642. Dekkers LC, Bloemendaal CJ, de Weger LA, Wijffelman CA, Spaink HP & Lugtenberg BJJ (1998a) A two-component system plays an important role in the root-colonising ability of Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact. 11:45–56 Dekkers LC, Phoelich CC, van der Fits L & Lugtenberg BJJ (1998b) A site-speci c recombinase is required for compet-itive root colonisation by Pseudomonas fluorescens WCS365. Proc. Natl. Acad. Sci. USA 95:7051–7056 de Weger LA, van der Vlugt CI, Wijfjes AH, Bakker PA, Schippers B & Lugtenberg BJJ (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are re-quired for colonisation of potato roots. J. Bacteriol. 169: 2769–2773 Dörr J, Hurek T & Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol. 30:7–17 Drenkard E & Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743 Duvick JP, Rood T, Rao AG & Marshak DR (1992) Puri-cation and characterization of a novel antimicrobial peptide from maize (Zea mays L. ) kernels. J. Biol. Chem. 267:18814–18820 Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb. Ecol. 21:35–48 Espinosa-Urgel M & Ramos JL (2001) A Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol. 67:5219–5224 Espinosa-Urgel M, Salido A & Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 182:2363–2369 Espinosa-Urgel M, Kolter R & Ramos JL (2002) Root colonisation by Pseudomonas putida:Love at rst sight. Microbiology 148:341–343 Girón JA, Torres AG, Freer E & Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44:361–379 Grall S & Manceau C (2003) Colonisation of Vitis vinifera by a green fluorescence protein-labeled gfp-marked strain of Xylophus ampelinus, the causal agent of bacterial necrosis of grapevine. Appl. Environ. Microbiol. 69:1904–1912 Hinsa SM, Espinosa-Urgel M, Ramos JL & O'Toole GA (2003) Transition from reversible to irreversible attachment during bio lm formation by Pseudomonas fluorescens requires an ABC transporter and a large secreted protein. Mol. Micro-biol. 49:905–918 Hirano SS & Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringaen –a pathogen, ice nucleus and epiphyte. Microbiol. Mol. Biol. Rev. 64:624–653 Kageyama K & Nelson EB (2003) Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl. Environ. Microbiol. 69:1114–1120 Kremer RJ & Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43:182–186 Lindemann J & Upper CD (1985) Aerial dispersal of epiphytic bacteria over bean plants. Appl. Environ. Microbiol. 50: 1229–1232 Lindow SE, Andersen G & Beattie GA (1993) Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic tness. Appl. Environ. Microbiol. 59:1593–1601 Lugtenberg BJJ, Kravchenko LV & Simons M (1999) Tomato seed and root exudate sugars:Composition, utilisation by Pseudomonas biocontrol strains and role in rhizosphere colonisation. Environ. Microbiol. 1:439–446 Lugtenberg BJJ, Dekkers L & Bloemberg GV (2001) Molecular determinants of rhizosphere colonisation by Pseudomonas. Annu. Rev. Phytopathol. 39:461–490 Mercier J & Lindow SE (2000) Role of leaf surface sugars in colonisation of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66:369–374 Molina L, Ramos C, Duque E, Ronchel MC, Garcí JM, Wyke L & Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol. Bio-chem. 32:315–321 O'Toole GA & Kolter R (1998a) Initiation of bio lm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways:A genetic analysis. Mol. Microbiol. 28:449–461 O'Toole GA & Kolter R (1998b) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295–304 O'Toole GA, Gibbs KA, Hager PW, Phibbs Jr PV & Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for bio lm development by Pseudomonas aeruginosa. J. Bacte-riol. 182:425–431 Parsek MR & Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria:A signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97:8789–8793 Poole K & Braun V (1988) Iron regulation of Serratia marcescens hemolysin gene expression. Infect. Immun. 56: 2967–2971 Poole K, Schiebel E & Braun V (1988) Molecular character-ization of the hemolysin determinant of Serratia marcescens. J. Bacteriol. 170:3177–3188 Pratt LA & Kolter R (1998) Genetic analysis of Escherichia coli bio lm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:285–293 Ramos C, Molbak L & Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66:801–809 Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin, S & Eberl L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262 Roberts DP, Dery PD & Hartung JS (1996a) Peptide utilisation and colonisation of corn, radish and wheat spermospheres by Enterobacter cloacae. Soil Biol. Biochem. 28:1109–1111 Roberts DP, Marty AM, Dery, PD, Yucel I & Hartung JS (1996b) Amino acids as reduced carbon sources for Entero-bacter cloacae during colonisation of the spermosphere of crop plants. Soil Biol. Biochem. 28:1015–1020 Roberts DP, Dery PD, Yucel I, Buyer J, Holtman MA & Kobayashi DY (1999) Role of pfkA and general carbohy-drate catabolism in seed colonisation by Enterobacter cloa-cae. Appl. Environ. Microbiol. 65:2513–2519 Sabaratnam S & Beattie GW (2003) Differences between Pseudomonas syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and endophytic colonisation of leaves. Appl. Environ. Microbiol. 69:1220–1228 Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Lange-bartels C & Eberl L (2001) Visualization of N-acylhomoser-ine lactone-mediated cell-cell communication between bacteria colonising the tomato rhizosphere. Appl. Environ. Microbiol. 67:5761–5770 Suoniemi A, Björklöf K, Haahtela K & Romantschuk M(1995) Pili of Pseudomonas syringae pathovar syringae enhance initiation of bacterial epiphytic colonisation of bean. Micro-biology 141:497–503 Thomashow LS (1996) Biological control of plant root patho-gens. Curr. Opin. Biotechnol. 7:343–347 Tombolini R, van der Gaag DJ, Gerhardson B & Jansson JK (1999) Colonisation pattern of the biocontrol strain Pseudo-monas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65:3674–3680 Turnbull GA, Morgan JAW, Whipps JM & Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol. Ecol. 35:57–65 Turnbull GA, Morgan JAW, Whipps JM & Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Micro-biol. Ecol. 36:21–31 Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P & Vanderleyden J (1999) Character-ization of a sugar-binding protein from Azospirillum brasi-lense mediating chemotaxis to and uptake of sugars. Mol. Microbiol. 32:703–714 Van cura V (1980) Fluorescent pseudomonads in the rhizo-sphere of plants and their relation to root exudates. Folia Microbiol. 25:168–173 Vande Broek A & Vanderleyden J (1995) The role of bacterial motility, chemotaxis, and attachment in bacteria-plant inter-actions. Mol. Plant-Microbe Interact. 8:800–810 Vande Broek A, Lambrecht M & Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonisation by Azospirillum brasilense. Micro-biology 144:2599–2606 Warren G & Wolber P (1991) Molecular aspects of microbial ice nucleation. Mol. Microbiol. 5:239–243 Weinhold B (2001) Last call for Lindane. Environ. Health Perspect. 109:A254 Wilson M, Hirano SS & Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenic-ity and potential of growth within the leaf. Appl. Environ. Microbiol. 65:1435–1443