Planning for the urban future: two-level spatial analysis to discover 15-Minute City potential in urban area and expansion in Tallinn, Estonia
Tóm tắt
Tallinn, Estonia's capital, has seen substantial urbanisation-related changes in recent decades due to global and geopolitical shifts following the Soviet Union's collapse. This surge in population led to increased demand for urban expansion and shaped a scattering residential settlements around Tallinn. This study centres on Tallinn's alignment with the 15-Minute City concept, focusing on accessibility, efficiency, and sustainability. We employed two-level spatial analysis. On the first level, we evaluated Tallinn's alignment with 15-Minute City criteria related to population, transportation, and essential services. On the second level, we assessed suitable areas for urban expansion in Harju County, considering various environmental and spatio-functional factors. Results identified the most suitable areas for expansion in the northern and central parts of Harju County, about 35 km from Tallinn's centre, with higher population density and good infrastructure accessibility. To advance Tallinn's progress toward a 15-Minute City, urban planning should prioritise in areas with the highest suitability when expansion is considered necessary, to ensure equitable service distribution, and emphasise environmental sustainability.
Từ khóa
Tài liệu tham khảo
Abdelfattah, L., Deponte, D., & Fossa, G. (2022). The 15-minute city: Interpreting the model to bring out urban resiliencies. Transportation Research Procedia, 60(2021), 330–337. https://doi.org/10.1016/j.trpro.2021.12.043
Adhvaryu, B. (2010). Enhancing urban planning using simplified models: SIMPLAN for Ahmedabad, India. Progress in Planning, 73(3), 113–207. https://doi.org/10.1016/j.progress.2009.11.001
Alexander, C., Ishikawa, S., & Silverstein, M. (1966). A pattern language which generates multi-service centers. The Centre for Environmental Structure.
Allam, Z., Bibri, S. E., Chabaud, D., & Moreno, C. (2022). The theoretical, practical, and technological foundations of the 15-minute city model: Proximity and its environmental, social and economic benefits for sustainability. Energies, 15(16), 1–20. https://doi.org/10.3390/en15166042
Allam, Z., Bibri, S. E., Chabaud, D., & Moreno, C. (2022). The ‘15-Minute City’ concept can shape a net-zero urban future. Humanities and Social Sciences Communications, 9(1), 126. https://doi.org/10.1057/s41599-022-01145-0
Allam, Z., Bibri, S. E., Jones, D. S., Chabaud, D., & Moreno, C. (2022). Unpacking the ‘15-Minute City’ via 6G, IoT, and digital twins: Towards a new narrative for increasing urban efficiency, resilience, and sustainability. Sensors, 22(4), 1369. https://doi.org/10.3390/s22041369
Balletto, G., Ladu, M., Milesi, A., & Borruso, G. (2021). A methodological approach on disused public properties in the 15-minute city perspective. Sustainability (Switzerland), 13(2), 1–19. https://doi.org/10.3390/su13020593
Batty, M., & Marshall, S. (2012). The origins of complexity theory in cities and planning. In Complexity theories of cities have come of age (pp. 21–45). Springer. https://doi.org/10.1007/978-3-642-24544-2_3.
Bibri, S. E., & Krogstie, J. (2020). Smart eco-city strategies and solutions for sustainability: The cases of royal seaport, Stockholm, and Western Harbor, Malmö, Sweden. Urban Science, 4(1), 11. https://doi.org/10.3390/urbansci4010011
Burgess, E. W. (2008). The growth of the city: An introduction to a research project. In Urban ecology (Vol. XVIII, pp. 71–78). Springer. https://doi.org/10.1007/978-0-387-73412-5_5.
Casarin, G., MacLeavy, J., & Manley, D. (2023). Rethinking urban utopianism: The fallacy of social mix in the 15-minute city. Urban Studies. https://doi.org/10.1177/00420980231169174
Chen, S., & Crawford, R. H. (2015). ModelLing the carbon footprint of urban development: a case study in Melbourne. In Living and learning: Research for a better built environment, March (pp. 267–277).
Chen, Y., Yu, J., Shahbaz, K., & Xevi, E. (2009). A GIS-based sensitivity analysis of multi-criteria weights. In 18th World IMACS/MODSIM congress, Cairns, Australia, 13–17 July (pp. 3137–3143). http://mssanz.org.au/modsim09. Accessed 3 Nov 2023
Coq-Huelva, D., & Asián-Chaves, R. (2019). Urban sprawl and sustainable urban policies. A review of the cases of Lima, Mexico City and Santiago de Chile [Expansión urbana y políticas urbanas sostenibles. Una revisión de los casos de Lima, Ciudad de México y Santiago de Chile]. Sustainability (Switzerland), 11(20), 5835.
Corbusier, L. (1971). City of tomorrow. Architectural Press.
Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of The Total Environment, 655, 707–719. https://doi.org/10.1016/j.scitotenv.2018.11.267
Dantzig, G. B., & Saaty, T. L. (1973). Compact city: A plan for a liveable urban environment. In Contemporary sociology (Vol. 4, Issue 4, p. 447). https://doi.org/10.2307/2062417.
Di Marino, M., Tomaz, E., Henriques, C., & Chavoshi, S. H. (2023). The 15-minute city concept and new working spaces: A planning perspective from Oslo and Lisbon. European Planning Studies, 31(3), 598–620. https://doi.org/10.1080/09654313.2022.2082837
Dutta, V. (2012). Land use dynamics and peri-urban growth characteristics: reflections on master plan and urban suitability from a sprawling North Indian City. Environment and Urbanization Asia, 3(2), 277–301. https://doi.org/10.1177/0975425312473226
Eastman, J. R. (2016). TerrSet geospatial monitoring and modeling system. In TerrSet Tutorial. Clark University, http://www.clarklabs.org. http://www.clarklabs.org.
Egidi, G., Halbac-Cotoara-Zamfir, R., Cividino, S., Quaranta, G., Salvati, L., & Colantoni, A. (2020). Rural in town: Traditional agriculture, population trends, and long-term urban expansion in metropolitan Rome. Land. https://doi.org/10.3390/land9020053
Estonian Land Board. (2022). https://geoportaal.maaamet.ee/eng/Spatial-Data-p58.html. Accessed 10 Aug 2023
Feng, Y., Cai, Z., Tong, X., Wang, J., Gao, C., Chen, S., & Lei, Z. (2018). Urban growth modeling and future scenario projection using cellular automata (CA) models and the R Package Optimx. ISPRS International Journal of Geo-Information, 7(10), 387. https://doi.org/10.3390/ijgi7100387
Feng, Y., Liu, M., Chen, L., & Liu, Y. (2016). Simulation of dynamic urban growth with partial least squares regression-based cellular automata in a GIS environment. ISPRS International Journal of Geo-Information, 5(12), 243. https://doi.org/10.3390/ijgi5120243
Ferrer-Ortiz, C., Marquet, O., Mojica, L., & Vich, G. (2022). Barcelona under the 15-minute city lens: mapping the accessibility and proximity potential based on pedestrian travel times. Smart Cities, 5(1), 146–161. https://doi.org/10.3390/smartcities5010010
Gaglione, F., Gargiulo, C., Zucaro, F., & Cottrill, C. (2022). Urban accessibility in a 15-minute city: A measure in the city of Naples. Italy. Transportation Research Procedia, 60(2021), 378–385. https://doi.org/10.1016/j.trpro.2021.12.049
Glock, J.-P., & Gerlach, J. (2023). Berlin Pankow: A 15-min city for everyone? A case study combining accessibility, traffic noise, air pollution, and socio-structural data. European Transport Research Review, 15(1), 7. https://doi.org/10.1186/s12544-023-00577-2
Guan, D., Zhao, Z., & Tan, J. (2019). Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing. China. Environmental Science and Pollution Research, 26(20), 20669–20688. https://doi.org/10.1007/s11356-019-05127-9
Hamilton, F. E. I., Andrews, K. D., & Pichler-Milanovic, N. (2005). Transformation of cities in central and Eastern Europe: Towards globalization.
Inostroza, L., Baur, R., & Csaplovics, E. (2010). Urban sprawl and fragmentation in Latin America: A comparison with European cities. The myth of the diffuse Latin American city. January (pp. 1–47).
Jacobs, J. (1961). The death and life of Great American cities. Vintage Books. https://doi.org/10.1081/e-epap3-120052744
Kährik, A., Leetmaa, K., & Tammaru, T. (2012). Residential decision-making and satisfaction among new suburbanites in the Tallinn urban region, Estonia. Cities, 29(1), 49–58. https://doi.org/10.1016/j.cities.2011.07.005
Kakderi, C., Oikonomaki, E., & Papadaki, I. (2021). Smart and resilient urban futures for sustainability in the post COVID-19 era: A review of policy responses on urban mobility. Sustainability (Switzerland). https://doi.org/10.3390/su13116486
Kapoor, S. S., & Brar, T. S. (2023). Measuring metro stations’ pedestrian accessibility in Noida using transit-oriented development index. Innovative Infrastructure Solutions, 8(1), 1–11. https://doi.org/10.1007/s41062-023-01037-5
Khavarian-Garmsir, A. R., Sharifi, A., Hajian Hossein Abadi, M., & Moradi, Z. (2023). From garden city to 15-minute city: a historical perspective and critical assessment. Land, 12(2), 512. https://doi.org/10.3390/land12020512
Li, B., Chen, D., Wu, S., Zhou, S., Wang, T., & Chen, H. (2016). Spatio-temporal assessment of urbanization impacts on ecosystem services: A case study of Nanjing City, China. Ecological Indicators, 71(December), 416–427. https://doi.org/10.1016/j.ecolind.2016.07.017
Li, J., & Yang, T. (2016). China’s eco-city construction. Springer.
Li, Y., Bonhomme, C., & Deroubaix, J.-F. (2018). Can a sustainable urban development model be exported? China Perspectives, 2018(1–2), 87–97. https://doi.org/10.4000/chinaperspectives.7821
Lima, F. T., Brown, N. C., & Duarte, J. P. (2022). A grammar-based optimization approach for designing urban fabrics and locating amenities for 15-minute cities. Buildings, 12(8), 1–16. https://doi.org/10.3390/buildings12081157
Liu, D., Kwan, M. P., Kan, Z., & Wang, J. (2022). Toward a healthy urban living environment: Assessing 15-minute green-blue space accessibility. Sustainability (Switzerland), 14(24), 1–12. https://doi.org/10.3390/su142416914
Liu, R., Zhang, K., Zhang, Z., & Borthwick, A. G. L. (2014). Land-use suitability analysis for urban development in Beijing. Journal of Environmental Management, 145(December), 170–179. https://doi.org/10.1016/j.jenvman.2014.06.020
Liu, Y., Song, W., & Deng, X. (2019). Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecological Indicators, 96(11), 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029
Logan, T. M., Hobbs, M. H., Conrow, L. C., Reid, N. L., Young, R. A., & Anderson, M. J. (2022). The x-minute city: Measuring the 10, 15, 20-minute city and an evaluation of its use for sustainable urban design. Cities, 131(January), 103924. https://doi.org/10.1016/j.cities.2022.103924
Luan, C., Liu, R., & Peng, S. (2021). Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili Valley, China. Ecological Indicators, 123, 107333. https://doi.org/10.1016/j.ecolind.2020.107333
Luo, J., Zhai, S., Song, G., He, X., Song, H., Chen, J., Liu, H., & Feng, Y. (2022). Assessing inequity in green space exposure toward a “15-Minute City” in Zhengzhou, China: Using deep learning and urban big data. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph19105798
Macharia, P. M., Mumo, E., & Okiro, E. A. (2021). Modelling geographical accessibility to urban centres in Kenya in 2019. PLoS ONE, 16(5), 1–24. https://doi.org/10.1371/journal.pone.0251624
Mitropoulos, L., Karolemeas, C., Tsigdinos, S., Vassi, A., & Bakogiannis, E. (2023). A composite index for assessing accessibility in urban areas: A case study in Central Athens, Greece. Journal of Transport Geography, 108(March), 103566. https://doi.org/10.1016/j.jtrangeo.2023.103566
Moreno, C., Allam, Z., Chabaud, D., Gall, C., & Pratlong, F. (2021). Introducing the “15-minute city”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities, 4(1), 93–111. https://doi.org/10.3390/smartcities4010006
Mozaffaree Pour, N. (2022). Urban expansion in Estonia: monitoring, analysis, and modeling. University of Tartu Press. http://dspace.ut.ee/handle/10062/83106. Accessed 22 Sept 2023
Mozaffaree Pour, N., Karasov, O., Burdun, I., & Oja, T. (2022). Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices. Environmental Monitoring and Assessment, 194(8), 584. https://doi.org/10.1007/s10661-022-10266-7
Mozaffaree Pour, N., & Oja, T. (2021). Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Science, 5(4), 85. https://doi.org/10.3390/urbansci5040085
Mozaffaree Pour, N., & Oja, T. (2022). Prediction power of logistic regression (LR) and multi-layer perceptron (MLP) models in exploring driving forces of urban expansion to be sustainable in Estonia. Sustainability, 14(1), 160. https://doi.org/10.3390/su14010160
Mundia, C. N., & Aniya, M. (2005). Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. International Journal of Remote Sensing, 26(13), 2831–2849. https://doi.org/10.1080/01431160500117865
Namboodiri, K. (1994). The human ecological approach to the study of population dynamics. Population Index, 60(4), 517–539.
Noworól, A., Kopyciński, P., Hałat, P., Salamon, J., & Hołuj, A. (2022). The 15-Minute City—the geographical proximity of services in Krakow. Sustainability, 14(12), 7103. https://doi.org/10.3390/su14127103
Oja, T. (2020). Change of land-use: Distortion of the meaning of urban and rural. In Helen Sooväli-Sepping (Ed.), Estonian human development report 2019/2020, spatial choices for an urbanised society (pp. 34–43). Tallinn: SA Eesti Koostöö kogu, Estonia. https://www.inimareng.ee/en/index.html. Accessed 1 Dec 2020.
OpenStreetMap contributors. (2023). Planet OSM. In OpenStreetMap. https://planet.osm.org/. Accessed 26 Aug 2023
Parente, L., Witjes, M., Hengl, T., Landa, M., & Brodsky, L. (2021). Continental Europe land cover mapping at 30m resolution based CORINE and LUCAS on samples. Zenodo.Org. https://doi.org/10.5281/zenodo.4725429.
Perra, V.-M., Sdoukopoulos, A., & Pitsiava-Latinopoulou, M. (2017). Evaluation of sustainable urban mobility in the city of Thessaloniki. Transportation Research Procedia, 24(2016), 329–336. https://doi.org/10.1016/j.trpro.2017.05.103
Pinto, F. (2021). Scenarios for a Post-Pandemic City: urban planning strategies and challenges of making “Milan 15-minutes city.” European Transport, 85, 1–15. https://doi.org/10.48295/ET.2021.85.12
Poorthuis, A., & Zook, M. (2023). Moving the 15-minute city beyond the urban core: The role of accessibility and public transport in the Netherlands. Journal of Transport Geography, 110(March), 103629. https://doi.org/10.1016/j.jtrangeo.2023.103629
Pozoukidou, G., & Chatziyiannaki, Z. (2021). 15-minute city: Decomposing the new urban planning Eutopia. Sustainability (Switzerland), 13(2), 1–25. https://doi.org/10.3390/su13020928
Rahimi, A. (2016). A methodological approach to urban landuse change modeling using infill development pattern—a case study in Tabriz, Iran. Ecological Processes, 5(1), 1–15. https://doi.org/10.1186/s13717-016-0044-6
Ratas, U., Rivis, R., Kont, A., Tõnisson, H., Vilumaa, K., Anderson, A., & Szava-Kovats, R. (2014). Regional variation in the dynamics of Estonia’s coastal landscapes. Journal of Coastal Research, 70, 139–144. https://doi.org/10.2112/SI70-024.1
Salem, M., Tsurusaki, N., & Divigalpitiya, P. (2019). Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: a case study of the Greater Cairo Region. Infrastructures, 4(1), 4. https://doi.org/10.3390/infrastructures4010004
Shen, J., & Wu, F. (2013). Moving to the suburbs: Demand-side driving forces of suburban growth in China. Environment and Planning A, 45(8), 1823–1844. https://doi.org/10.1068/a45565
Soliman, A. M., & Soliman, Y. A. (2022). Exposing urban sustainability transitions: Urban expansion in Alexandria, Egypt. International Journal of Urban Sustainable Development, 14(1), 33–55. https://doi.org/10.1080/19463138.2022.2056894
Statistical Database. (2023). Statistics Estonia. https://Andmed.Stat.Ee/En/Stat. https://andmed.stat.ee/en/stat/rahvastik__rahvastikunaitajad-ja-koosseis__demograafilised-pehinaitajad/RV032. Accessed 22 Aug 2023
Sumari, N. S., Ujoh, F., Samwel Swai, C., & Zheng, M. (2023). Urban growth dynamics and expansion forms in 11 Tanzanian cities from 1990 to 2020. International Journal of Digital Earth, 16(1), 1985–2001. https://doi.org/10.1080/17538947.2023.2218114
Tahmasbi, B., Mansourianfar, M. H., Haghshenas, H., & Kim, I. (2019). Multimodal accessibility-based equity assessment of urban public facilities distribution. Sustainable Cities and Society, 49(May), 101633. https://doi.org/10.1016/j.scs.2019.101633
Tallinn municipality geoportal. (2023). Tallinn spatial data. https://www.tallinn.ee/en/geoportal/spatial-data. Accessed 10 Aug 2023
Tammaru, T., Kulu, H., & Kask, I. (2004). Urbanization, suburbanization, and counter urbanization in Estonia. Eurasian Geography and Economics, 45(3), 212–229. https://doi.org/10.2747/1538-7216.45.3.212
Tammaru, T., Leetmaa, K., Silm, S., & Ahas, R. (2009). Temporal and spatial dynamics of the new residential areas around Tallinn. European Planning Studies, 17(3), 423–439. https://doi.org/10.1080/09654310802618077
United Nations. (2018). In United Nations. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 27 Sept 2023
Van Leynseele, Y., & Bontje, M. (2019). Visionary cities or spaces of uncertainty? Satellite cities and new towns in emerging economies. International Planning Studies, 24(3–4), 207–217. https://doi.org/10.1080/13563475.2019.1665270
Wang, Y., He, B.-J., Kang, C., Yan, L., Chen, X., Yin, M., Liu, X., & Zhou, T. (2022). Assessment of walkability and walkable routes of a 15-min city for heat adaptation: Development of a dynamic attenuation model of heat stress. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2022.1011391
Wei, B., Li, Y., Suo, A., Zhang, Z., Xu, Y., & Chen, Y. (2021). Spatial suitability evaluation of coastal zone, and zoning optimisation in Ningbo, China. Ocean and Coastal Management, 204(May 2020), 105507. https://doi.org/10.1016/j.ocecoaman.2020.105507
Wen, Y., Liu, X., Bai, Y., Sun, Y., Yang, J., Lin, K., Pei, F., & Yan, Y. (2019). Determining the impacts of climate change and urban expansion on terrestrial net primary production in China. Journal of Environmental Management, 240(March), 75–83. https://doi.org/10.1016/j.jenvman.2019.03.071
Willberg, E., Fink, C., & Toivonen, T. (2023). The 15-minute city for all? Measuring individual and temporal variations in walking accessibility. Journal of Transport Geography, 106(November 2022), 103521. https://doi.org/10.1016/j.jtrangeo.2022.103521
Wu, W., Zhao, S., & Henebry, G. M. (2019). Drivers of urban expansion over the past three decades: A comparative study of Beijing, Tianjin, and Shijiazhuang. Environmental Monitoring and Assessment, 191(1), 34. https://doi.org/10.1007/s10661-018-7151-z
Zhang, D., Ma, S., Fan, J., Xie, D., Jiang, H., & Wang, G. (2023). Assessing spatial equity in urban park accessibility: An improve two-step catchment area method from the perspective of 15-mintue city concept. Sustainable Cities and Society, 98(July), 104824. https://doi.org/10.1016/j.scs.2023.104824
Zhang, S., Zhen, F., Kong, Y., Lobsang, T., & Zou, S. (2023). Towards a 15-minute city: A network-based evaluation framework. Environment and Planning B: Urban Analytics and City Science, 50(2), 500–514. https://doi.org/10.1177/23998083221118570
Zhao, P., Lü, B., & de Roo, G. (2010). Urban expansion and transportation: The impact of urban form on commuting patterns on the City Fringe of Beijing. Environment and Planning A: Economy and Space, 42(10), 2467–2486. https://doi.org/10.1068/a4350