Plane stress yield function for aluminum alloy sheets—part 1: theory

International Journal of Plasticity - Tập 19 Số 9 - Trang 1297-1319 - 2003
F. Barlat1,2, J.C. Brem2, Jeong Whan Yoon1,3, Kyoung−Jae Chung4, Robert E. Dick5, D.J. Lege2, Farhang Pourboghrat6, Sun Choi7, Ernest H. Y. Chu8
1Center for Mechanical Technology and Automation, University of Aveiro, P-3810 Aveiro, Portugal
2Materials Science Division, Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069-0001, USA
3Marc development group, MSC Software Corporation, 260 Sheridan Av., Palo Alto, CA 94306, USA
4Department of Materials Science and Engineering, College of Engineering, Seoul National University, 56-1, Shinlim-Dong, Kwanak-Ku, Seoul, 151-742, South Korea
5Rigid Packaging Design and Development, Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069-0001, USA
6Deptartment of Mechanical Engineering, Michigan State University, 2241 Engineering Building, East Lansing, MI 48824, USA
7POSCO Technical Research Laboratories, 699, Kumho-Dong, Kwangyang-Shi, Cheonam, 545-090, South Korea
8Forming and Machining Platform, Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069-0001, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banabic, 2000, Anisotropy in sheet Metals, 119

Barlat, 1989, Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, 5, 51, 10.1016/0749-6419(89)90019-3

Barlat, 1997, Yielding description of solution strengthened aluminum alloys, Int. J. Plasticity, 13, 385, 10.1016/S0749-6419(97)80005-8

Barlat, 1993, Anisotropic potentials for plastically deforming metals, Modelling and Simulation in Materials Science and Engineering, 1, 403, 10.1088/0965-0393/1/4/005

Barlat, 1993, Strain rate potential for metals and its application to minimum work path calculations, Int. J. Plasticity, 9, 51, 10.1016/0749-6419(93)90013-G

Barlat, 1998, Plastic anisotropy modeling for sheet forming design applications, 301

Barlat, 1991, A six-component yield function for anisotropic materials, Int. J. Plasticity, 7, 693, 10.1016/0749-6419(91)90052-Z

Barlat, 1991, Constitutive behavior for anisotropic materials and application to a 2090-T3 Al–Li alloy, 189

Barlat, 1997, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids, 45, 1727, 10.1016/S0022-5096(97)00034-3

Becker, R.C., 1998. Private information, Alcoa Technical Center, Pennsylvania, December 1998.

Bishop, 1951, A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Philos. Mag., 42, 414, 10.1080/14786445108561065

Bishop, 1951, A theoretical derivation of the plastic properties of polycrystalline face-centered metals, Philos. Mag., 42, 1298, 10.1080/14786444108561385

Bunge, 1982

Cazacu, 2001, Generalization of Drucker's yield criterion to orthotropy, Mathematics and Mechanics of Solids, 6, 613, 10.1177/108128650100600603

Chung, 1992, Finite element simulation of sheet forming for planar anisotropic metals, Int. J. Plasticity, 8, 453, 10.1016/0749-6419(92)90059-L

François, 2001, A plasticity model with yield surface distortion for non-proportional loading, Int. J. Plasticity, 17, 703, 10.1016/S0749-6419(00)00025-5

Hershey, 1954, The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals, J. Appl. Mech. Trans. ASME, 21, 241, 10.1115/1.4010900

Hill, 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, A193, 281, 10.1098/rspa.1948.0045

Hill, 1979, Theoretical plasticity of textured aggregates, Math. Proc. Cambridge Philos. Soc., 85, 179, 10.1017/S0305004100055596

Hill, 1987, Constitutive dual potential in classical plasticity, J. Mech. Phys. Solids, 35, 23, 10.1016/0022-5096(87)90025-1

Hill, 1990, Constitutive modelling of orthotropic plasticity in sheet metals, J. Mech. Phys. Solids, 38, 405, 10.1016/0022-5096(90)90006-P

Hill, 1993, A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. Mech. Sci., 35, 19, 10.1016/0020-7403(93)90061-X

Hosford, 1972, A generalized isotropic yield criterion, J. Appl. Mech. Trans. ASME, 39, 607, 10.1115/1.3422732

Inal, 2000, Simulation of earing in textured aluminum sheets, Int. J. Plasticity, 16, 635, 10.1016/S0749-6419(99)00065-0

Karafillis, 1993, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, 41, 1859, 10.1016/0022-5096(93)90073-O

Lademo, O.G., 1999. Engineering Models of Rlastoplasticity and Fracture for Aluminum Alloys. PhD thesis, Norvegian Institute of Science and Technology, Trondheim, Norway, 1999.

Lademo, 1999, An evaluation of yield criteria and flow rules for aluminum alloys, Int. J. Plasticity, 15, 191, 10.1016/S0749-6419(98)00064-3

Lippman, 1970, Matrixungleichungen und die Konvexität der Fliessfläche, Zeit. Angew. Mech., 50, 134, 10.1002/zamm.19700500168

Logan, 1980, Upper-bound anisotropic yield locus calculations assuming pencil glide, Int. J. Mech. Sci., 22, 419, 10.1016/0020-7403(80)90011-9

Rockafellar, 1970

Sobotka, 1969, Theory des plastischen fliessens von anisotropen körpern, Zeit. Angew. Math. Mech., 49, 25, 10.1002/zamm.19690490105

Szabo, L., 2001. Private communication at Euromech Colloquium 430, Formulations and Constitutive Laws for Very Large Strains, Prague, Czech Republic, October 2001.

Taylor, 1938, Plastic strains in metals, J. Institute of Metals, 62, 307

Tozawa, 1978, Plastic deformation behavior under the conditions of combined stress, 81

Tozawa, 1972, A biaxial compression testing method for thin sheets, Plasticity and Processing, 13, 538

Tucu, 1999, On the implementation of anisotropic yield functions into finite strain problems of sheet metal forming, Int. J. Plasticity, 16, 701

Tucu, 1999, Finite strain analysis of simple shear using recent anisotropic yield criteria, Int. J. Plasticity, 16, 701

Worswick, 2000, The numerical simulation of stretch flange forming, Int. J. Plasticity, 16, 701, 10.1016/S0749-6419(99)00069-8

Yoon, J.W., Barlat, F., in press. Plane stress yield function for aluminum alloy sheets—Part II: FE implementation. Int. J. Plasticity.

Yoon, 1999, A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming, Int. J. Plasticity, 15, 35, 10.1016/S0749-6419(98)00059-X

Zyczkowski, M., 1981. Combined loadings at the level P of a point of a body. In: Combined Loadings in the Theory of Plasticity, Polish Scientific Publishers, Warsaw, Poland, p.87.