Planar model system of the Phillips (Cr/SiO2) catalyst based on a well-defined thin silicate film

Journal of Catalysis - Tập 357 - Trang 12-19 - 2018
Qiushi Pan1, Linfei Li1, Shamil Shaikhutdinov1, Hans-Joachim Freund1
1Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany

Tài liệu tham khảo

Hogan, 1970, Ethylene polymerization catalysis over chromium oxide, J. Polym. Sci. Part A-1 Polym. Chem., 8, 2637, 10.1002/pol.1970.150080929 Groppo, 2005, The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods, Chem. Rev., 105, 115, 10.1021/cr040083s Weckhuysen, 1995, Combined DRS-RS-EXAFS-XANES-TPR study of supported chromium catalysts, J. Chem. Soc., Faraday Trans., 91, 3245, 10.1039/FT9959103245 McDaniel, 2010, Chapter 3 - A review of the Phillips supported chromium catalyst and its commercial use for ethylene polymerization, 123, 10.1016/S0360-0564(10)53003-7 Cheng, 2017, High-resolution 29Si CP/MAS solid state NMR spectroscopy and DFT investigation on the role of geminal and single silanols in grafting chromium species over Phillips Cr/silica catalyst, Appl. Catal. A, 543, 26, 10.1016/j.apcata.2017.05.011 Thüne, 2001, Bonding of supported chromium during thermal activation of the CrOx/SiO2 (Phillips) ethylene polymerization catalyst, J. Phys. Chem. B, 105, 3073, 10.1021/jp0039417 van Kimmenade, 2004, A surface science model for the Phillips ethylene polymerization catalyst: thermal activation and polymerization activity, J. Catal., 223, 134, 10.1016/j.jcat.2003.12.019 Zhong, 2012, Spectroscopic and structural characterization of Cr(II)/SiO2 active site precursors in model Phillips polymerization catalysts, J. Catal., 293, 1, 10.1016/j.jcat.2012.05.014 Cheng, 2013, Phillips Cr/silica catalyst for ethylene polymerization, Adv. Polym. Sci., 135, 10.1007/12_2013_222 Weckhuysen, 1996, Surface chemistry and spectroscopy of chromium in inorganic oxides, Chem. Rev., 96, 3327, 10.1021/cr940044o Gierada, 2017, Active sites formation and their transformations during ethylene polymerization by the Phillips CrOx/SiO2 catalyst, J. Catal., 352, 314, 10.1016/j.jcat.2017.05.025 Fong, 2016, One-electron-redox activation of the reduced phillips polymerization catalyst, via alkylchromium(IV) homolysis: a computational assessment, ACS Catal., 6073, 10.1021/acscatal.6b01728 Brown, 2015, Mechanism of initiation in the Phillips ethylene polymerization catalyst: redox processes leading to the active site, ACS Catal., 5, 5574, 10.1021/acscatal.5b00927 Groppo, 2006, In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO2 Phillips catalyst: Solving the puzzle of the initiation mechanism?, J. Catal., 240, 172, 10.1016/j.jcat.2006.03.006 Groppo, 2011, Enhancing the initial rate of polymerisation of the reduced phillips catalyst by one order of magnitude, Chem. Eur. J., 17, 11110, 10.1002/chem.201101714 Ikeda, 2003, Performance of the Cr[CH(SiMe3)2]3/SiO2 catalyst for ethylene polymerization compared with the performance of the Phillips catalyst, J. Polym. Sci., Part A: Polym. Chem., 41, 413, 10.1002/pola.10590 Wachs, 2007, In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides, J. Phys. Chem. C, 14410 Chakrabarti, 2016, Operando molecular spectroscopy during ethylene polymerization by supported CrO x /SiO2 catalysts: active sites, reaction intermediates, and structure-activity relationship, Top Catal., 59, 725, 10.1007/s11244-016-0546-6 Conley, 2014, Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C=H bond activation, Angew. Chem. – Int. Ed., 53, 1872, 10.1002/anie.201308983 Delley, 2014, Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates, Proc. Natl. Acad. Sci. USA, 111, 11624, 10.1073/pnas.1405314111 Conley, 2015, Heterolytic activation of C-H bonds on CrIII–O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane, Inorg. Chem., 54, 5065, 10.1021/ic502696n Floryan, 2017, Strain effect and dual initiation pathway in CrIII/SiO2 polymerization catalysts from amorphous periodic models, J. Catal., 346, 50, 10.1016/j.jcat.2016.11.037 Delley, 2017, Local structures and heterogeneity of silica-supported M(III) sites evidenced by EPR, IR, NMR, and luminescence spectroscopies, J. Am. Chem. Soc., 139, 8855, 10.1021/jacs.7b02179 Thüne, 1997, Working surface science model for the phillips ethylene polymerization catalyst: preparation and testing, J. Phys. Chem. B, 101, 8559, 10.1021/jp971753j Thüne, 2000, Planar model system for olefin polymerization: the Phillips CrO x /SiO2 catalyst, Top Catal., 13, 67, 10.1023/A:1009084922459 Thüne, 2007, Visualization of local ethylene polymerization activity on a flat CrO x/SiO2/Si(100) model catalyst, Top Catal., 46, 239, 10.1007/s11244-007-0334-4 van Kimmenade, 2006, The effect of temperature on ethylene polymerization over flat Phillips model catalysts, J. Catal., 240, 39, 10.1016/j.jcat.2006.03.002 Yang, 2012, Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra, Phys. Chem. Chem. Phys., 14, 11344, 10.1039/c2cp41355h Shaikhutdinov, 2015, Ultra-thin silicate films on metals, J. Phys.: Condens. Matter, 27, 443001 Büchner, 2014, Ultrathin silica films: the atomic structure of two-dimensional crystals and glasses, Chem. – Eur. J., 20, 9176, 10.1002/chem.201402452 Loeffler, 2010, Growth and structure of crystalline silica sheet on Ru(0001), Phys. Rev. Lett., 105 Yu, 2016, Electron stimulated hydroxylation of a metal supported silicate film, Phys. Chem. Chem. Phys., 18, 3755, 10.1039/C5CP06852E Lichtenstein, 2012, Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures, J. Phys. Chem. C, 116, 20426, 10.1021/jp3062866 Yang, 2013, Hydroxylation of metal-supported sheet-like silica films, J. Phys. Chem. C, 117, 8336, 10.1021/jp401935u Büchner, 2014, Adsorption of Au and Pd on ruthenium-supported bilayer silica, J. Phys. Chem. C, 118, 20959, 10.1021/jp5055342 Barraclough, 1959, 713. The stretching frequencies of metal-oxygen double bonds, J. Chem. Soc. (Resumed), 3552, 10.1039/JR9590003552 Dines, 2003, Raman spectroscopic study of supported chromium(vi) oxide catalysts, Phys. Chem. Chem. Phys., 5, 1320, 10.1039/b211857b Groppo, 2005, New strategies in the Raman study of the Cr/SiO2 Phillips catalyst: observation of molecular adducts on Cr(II) sites, Chem. Mater., 17, 2019, 10.1021/cm050043k Demmelmaier, 2008, Nature of ≡SiOCrO2Cl and (≡SiO)2CrO2 Sites prepared by grafting CrO2Cl2 onto silica, J. Phys. Chem. C, 112, 6439, 10.1021/jp7119153 Hope, 1986, Characterisation of CrO2Br 2 and CrO2BrCl by matrix-isolation infrared spectroscopy, J. Chem. Soc., Dalton Trans., 1587, 10.1039/dt9860001587 Handzlik, 2013, Structure of monomeric Chromium(VI) oxide species supported on silica: periodic and cluster DFT studies, J. Phys. Chem. C, 117, 8138, 10.1021/jp3103035 Seiferth, 1999, IR investigations of CO2 adsorption on chromia surfaces: Cr2O3 (0001)/Cr(110) versus polycrystalline α-Cr2O3, Surf. Sci., 421, 176, 10.1016/S0039-6028(98)00857-7 Dillmann, 1996, Adsorption on a polar oxide surface: O2, C2H4 and Na on Cr2O3(0001)/Cr(110), Faraday Discuss., 105, 295, 10.1039/FD9960500295 Weckhuysen, 2000, In situ Raman spectroscopy of supported transition metal oxide catalysts: 18O2−16O2 isotopic labeling studies, J. Phys. Chem. B, 104, 7382, 10.1021/jp000055n Damin, 2006, Vibrational properties of CrII centers on reduced Phillips catalysts highlighted by resonant Raman spectroscopy, ChemPhysChem: Eur. J. Chem. Phys. Phys. Chem., 7, 342, 10.1002/cphc.200500408 Rebenstorf, 1981, IR studies of coordinatively unsaturated surface compounds on silica gel. IV. CO complexes of chromium(II) and chromium(III), Zeitschrift für anorganische und allgemeine Chemie, 478, 119, 10.1002/zaac.19814780714 Kohler, 1994, Infrared spectroscopic characterization of chromium carbonyl species formed by ultraviolet photoreduction of silica-supported chromium(VI) in carbon monoxide, J. Phys. Chem., 98, 4336, 10.1021/j100067a021 Shufler, 1956, Infrared spectrum and structure of chromium hexacarbonyl, Cr(CO)6, J. Am. Chem. Soc., 78, 2687, 10.1021/ja01593a008 Zecchina, 1988, Infrared characterization of group VIB metal carbonyls adsorbed on.gamma.-alumina, Inorg. Chem., 27, 102, 10.1021/ic00274a022 Guglielminotti, 1981, Cr(CO)6 adsorption on silica: formation of a chromiasilica surface phase and its interaction with the carbonyl compound, J. Mol. Catal., 13, 207, 10.1016/0304-5102(81)85021-3 Boxhoorn, 1979, Photochemistry of Cr(CO)5PCl3, Cr(CO)5pyridine and Cr(CO)5pyrazine in Ar matrices at 10 K. Evidence for the formation of Cr(CO)5 and two novel complexes cis-Cr(CO)4pyridine and cis-Cr(CO)4pyrazine, Inorg. Chim. Acta, 33, 215, 10.1016/S0020-1693(00)89479-7 Baron, 2009, Resolving the atomic structure of vanadia monolayer catalysts: monomers, Trimers, and Oligomers on Ceria, Angew. Chem. Int. Ed., 48, 8006, 10.1002/anie.200903085 Stacchiola, 2002, Ethylene adsorption on Pd(1 1 1) studied using infrared reflection–absorption spectroscopy, Surf. Sci., 511, 215, 10.1016/S0039-6028(02)01498-X Stuve, 1985, Use of the.pi.sigma. parameter for characterization of rehybridization upon adsorption on metal surfaces, J. Phys. Chem., 89, 3183, 10.1021/j100261a001 Larkin, 2011, Chapter 4 - Environmental Dependence of Vibrational Spectra, 55 Lee, 2005, Thermal chemistry of C4 hydrocarbons on Pt(111): mechanism for double-bond isomerization, J. Phys. Chem. B, 109, 2745, 10.1021/jp045443u Larkin, 2011, Chapter 6 - IR and Raman Spectra-Structure Correlations: Characteristic Group Frequencies, 73 Yadav, 2005, Mass Spectroscopy (MS), 250 Pretsch, 2000, Mass Spectrometry, 313 S.E. Stein, IR and Mass Spectra, in: P.J.L.a.W.G. Mallard (Ed.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, retrieved July 12, 2017. Ransley, 1993, Adsorption and thermal decomposition of ethene and propene on Ru(0001), studied by RAIRS, Surf. Sci., 298, 187, 10.1016/0039-6028(93)90094-Z Fong, 2015, Computational kinetic discrimination of ethylene polymerization mechanisms for the Phillips (Cr/SiO2) catalyst, ACS Catal., 5, 3360, 10.1021/acscatal.5b00016