Planar Graphs Without Cycles of Specific Lengths

European Journal of Combinatorics - Tập 23 - Trang 377-388 - 2002
G. Fijavž1, M. Juvan1, B. Mohar1, R. Škrekovski1
1Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

Tài liệu tham khảo

Alon, 1993, Restricted colorings of graphs, 1 Gutner, 1996, The complexity of planar graph choosability, Discrete Math., 159, 119, 10.1016/0012-365X(95)00104-5 Jensen, 1995 Kratochvı́l, 1999 Lam, 1999, The 4-choosability of plane graphs without 4-cycles, J. Comb. Theory Ser. B, 76, 117, 10.1006/jctb.1998.1893 Mirzakhani, 1996, A small non-4-choosable planar graph, Bull. Inst. Comb. Appl., 17, 15 Thomassen, 1994, Every planar graph is 5-choosable, J. Comb. Theory Ser. B, 62, 180, 10.1006/jctb.1994.1062 Thomassen, 1994, 3-list-coloring planar graphs of girth 5, J. Comb. Theory Ser. B, 64, 101, 10.1006/jctb.1995.1027 Tuza, 1997, Graph colorings with local constraints—a survey, Discuss. Math. Graph Theory, 17, 161, 10.7151/dmgt.1049 Voigt, 1993, List colourings of planar graphs, Discrete Math., 120, 215, 10.1016/0012-365X(93)90579-I Voigt, 1995, A not 3-choosable planar graph without 3-cycles, Discrete Math., 146, 325, 10.1016/0012-365X(94)00180-9 W. Weifan, K. -W. Lih, Choosability and edge choosability of planar graphs without 5- cycles, Appl. Math. Lett, to appear Weifan, 2001, Structural properties and edge choosability of plane graphs without 6-cycles, Comb. Probab. Comput., 10, 267, 10.1017/S0963548301004576