Placental structure in gestational diabetes mellitus
Tài liệu tham khảo
Cho, 2018, IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract., 138, 271, 10.1016/j.diabres.2018.02.023
Ogurtsova, 2017, IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040, Diabetes Res. Clin. Pract., 128, 40, 10.1016/j.diabres.2017.03.024
World Health Organization, 2014, Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy, Diabetes Res. Clin. Pract., 37, S14
Huynh, 2015, A systematic review of placental pathology in maternal diabetes mellitus, Placenta., 36, 101, 10.1016/j.placenta.2014.11.021
Ladfors, 2017, Fetal overgrowth in women with type 1 and type 2 diabetes mellitus, PLoS One, 12, 10.1371/journal.pone.0187917
Imakawa, 2017, Continuous model of conceptus implantation to the maternal endometrium, J. Endocrinol., 233, R53, 10.1530/JOE-16-0490
Silva, 2016, Intrauterine trophoblast migration: a comparative view of humans and rodents, Cell Adhes. Migr., 10, 88, 10.1080/19336918.2015.1120397
Maltepe, 2015, Placenta: the forgotten organ, Annu. Rev. Cell Dev. Biol., 31, 523, 10.1146/annurev-cellbio-100814-125620
Bazer, 2009, Comparative aspects of implantation, Reproduction., 138, 195, 10.1530/REP-09-0158
Chavatte-Palmer, 2016, Placentation in different mammalian species, Ann. Endocrinol. (Paris)., 77, 67, 10.1016/j.ando.2016.04.006
Carter, 2016, Placentation in mammals: definitive placenta, yolk sac, and paraplacenta, Theriogenology., 86, 278, 10.1016/j.theriogenology.2016.04.041
Hafez, 2017, Comparative placental anatomy: divergent structures serving a common purpose, 1, 10.1016/bs.pmbts.2016.12.001
Benirschke, 2012, Macroscopic features of the delivered placenta, 12
K. Madhuri, I. Jyothi, A study on placental morphology in gesatational diabetes, J. Evid. Based Med. Healthc. 4 (2017) 71–75. doi:10.18410/jebmh/2017/14.
Daskalakis, 2008, Placental pathology in women with gestational diabetes, Acta Obstet. Gynecol. Scand., 87, 403, 10.1080/00016340801908783
Higgins, 2011, Stereology of the placenta in type 1 and type 2 diabetes, Placenta., 32, 564, 10.1016/j.placenta.2011.04.015
G. Augustine, M. Pulikkathodi, R. S, J. TK, A study of placental histological changes in gestational diabetes mellitus on account of fetal hypoxia, Int. J. Med. Sci. Public Heal. 5 (2016) 2457. doi:https://doi.org/10.5455/ijmsph.2016.29042016494.
S.P. Hussain, Z.I.A.U.L. Islam, Gestational diabetes : effect on gross morphology of human placenta and birth weight, Pakistan J. Med. Sci. 7 (2013) 1077–1081.
P. Saini, J. Pankaj, A. Jain, G. Agarwal, Effect of gestational diabetes mellitus on gross morphology of placenta: a comparative study, Int J Anat Res. 3 (2015) 889–94. doi:10.16965/ijar.2015.111.
Bentley-Lewi, 2014, Placental histomorphometry in gestational diabetes mellitus, Am. J. Clin. Pathol., 141, 587, 10.1309/AJCPX81AUNFPOTLL
Nelson, 2009, Placental structure in type 1 diabetes: relation to fetal insulin, leptin, and IGF-I, Diabetes., 58, 2634, 10.2337/db09-0739
Bischof, 2005, The human cytotrophoblastic cell, a mononuclear chameleon, Int. J. Biochem. Cell Biol., 37, 1, 10.1016/j.biocel.2004.05.014
C. Lavialle, G. Cornelis, A. Dupressoir, C. Esnault, O. Heidmann, C. Vernochet, T. Heidmann, Paleovirology of “syncytins”, retroviral env genes exapted for a role in placentation, Philos. Trans. R. Soc. B Biol. Sci. 368 (2013). doi:https://doi.org/10.1098/rstb.2012.0507.
Manolea, 2015, Evaluation of the implantation site morphology in spontaneous abortion, Romanian J. Morphol. Embryol., 56, 125
Blundell, 2016, A microphysiological model of the human placental barrier, Lab Chip, 16, 3065, 10.1039/C6LC00259E
Arshad, 2015, Histoarchitectural study of chorionic villi in 1st and 2nd trimester placentas, J. Anat. Soc. India., 64, 99, 10.1016/j.jasi.2015.10.002
Jirkovská, 2008, Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta, Placenta., 29, 892, 10.1016/j.placenta.2008.07.004
Pearce, 2016, Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries, PLoS One, 11, 1, 10.1371/journal.pone.0165369
Plitman Mayo, 2016, Three-dimensional modeling of human placental terminal villi, Placenta., 43, 54, 10.1016/j.placenta.2016.05.001
Haeussner, 2014, Novel 3D microscopic analysis of human placental villous trees reveals unexpected significance of branching angles, Sci. Rep., 4, 1, 10.1038/srep06192
Bolon, 2014, Pathology analysis of the placenta, 175
Enders, 1965, A comparative study of the fine structure of the trophoblast in several hemochorial placentas, Am. J. Anat., 116, 29, 10.1002/aja.1001160103
E. Meserve, M.M. Parast, T.K. Boyd, Gestational Diseases and the Placenta, in: C.P. Crum, H.K. Haefner, W.A.I. Peters (Eds.), Diagnostic Gynecol. Obstet. Pathol., 3rd ed., Elsevier Inc., Philadelphia, PA., USA, 2018: pp. 1219–1249. doi:https://doi.org/10.1016/B978-0-323-44732-4.00033-9.
T.Y. Khong, E.E. Mooney, I. Ariel, N.C.M. Balmus, T.K. Boyd, M.A. Brundler, H. Derricott, M.J. Evans, O.M. Faye-Petersen, J.E. Gillan, A.E.P. Heazell, D.S. Heller, S.M. Jacques, S. Keating, P. Kelehan, A. Maes, E.M. McKay, T.K. Morgan, P.G.J. Nikkels, W.T. Parks, R.W. Redline, I. Scheimberg, M.H. Schoots, N.J. Sebire, A. Timmer, G. Turowski, J.P. Van Der Voorn, I. Van Lijnschoten, S.J. Gordijn, Sampling and definitions of placental lesions Amsterdam placental workshop group consensus statement, Arch. Pathol. Lab. Med. 140 (2016) 698–713. doi:https://doi.org/10.5858/arpa.2015-0225-CC.
Hayward, 2016, Placental adaptation: what can we learn from birthweight:placental weight ratio?, Front. Physiol., 7, 1, 10.3389/fphys.2016.00028
Fowden, 2009, Placental efficiency and adaptation: endocrine regulation, J. Physiol., 587, 3459, 10.1113/jphysiol.2009.173013
Jauniaux, 2006, Villous histomorphometry and placental bed biopsy investigation in type I diabetic pregnancies, Placenta., 27, 468, 10.1016/j.placenta.2005.04.010
Belkacemi, 2013, Reduced apoptosis in term placentas from gestational diabetic pregnancies, J. Dev. Orig. Health Dis., 4, 256, 10.1017/S2040174413000068
Magee, 2014, Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta, J. Diabetes Complicat., 28, 448, 10.1016/j.jdiacomp.2014.03.010
Makhseed, 2002, Placental pathology in relation to the White's classification of diabetes mellitus, Arch. Gynecol. Obstet., 266, 136, 10.1007/s004040100232
M. Jakó, A. Surányi, L. Kaizer, D. Domokos, G. Bártfai, The correlation of ultrasonographic and pathophysiologic measurements of umbilical vessels in gestational diabetes 1, Southeast. Eur. Med. J. 1 (2017) 40–49. doi:10.26332/seemedj.v1i1.20.
Jirkovská, 2002, Topological properties and spatial organization of villous capillaries in normal and diabetic placentas, J. Vasc. Res., 2, 268, 10.1159/000063692
Jirkovská, 2012, The branching pattern of villous capillaries and structural changes of placental terminal villi in type 1 diabetes mellitus, Placenta., 33, 343, 10.1016/j.placenta.2012.01.014
Verma, 2010, Cellular changes in the placenta in pregnancies complicated with diabetes, Int. J. Morphol., 28, 259, 10.4067/S0717-95022010000100038
Taricco, 2009, Effects of gestational diabetes on fetal oxygen and glucose levels in vivo, BJOG An Int. J. Obstet. Gynaecol., 116, 1729, 10.1111/j.1471-0528.2009.02341.x
Abdelhalim, 2018, Morphological and ultrastructural changes in the placenta of the diabetic pregnant Egyptian women, Acta Histochem., 120, 490, 10.1016/j.acthis.2018.05.008
Jirkovská, 2016, Impact of maternal diabetes type 1 on proliferative potential, differentiation and apoptotic activity in villous capillaries of term placenta, Placenta., 40, 1, 10.1016/j.placenta.2016.02.003
Clarson, 1989, Placental weight in diabetic pregnancies, Placenta., 10, 275, 10.1016/0143-4004(89)90028-3
Unek, 2014, Immunohistochemical distribution of cell cycle proteins p27, p57, cyclin D3, PCNA and Ki67 in normal and diabetic human placentas, J. Mol. Histol., 45, 21, 10.1007/s10735-013-9534-3
L.C. Reed, S.M. Estrada, R.B. Walton, P.G. Napolitano, N. Ieronimakis, Evaluating maternal hyperglycemic exposure and fetal placental arterial dysfunction in a dual cotyledon, dual perfusion model, Placenta. 69 (2018) 109–116. doi:https://doi.org/10.1016/j.placenta.2018.07.015.
Giannubilo, 2018, Fetal sex, need for insulin, and perinatal outcomes in gestational diabetes mellitus: an observational cohort study, Clin. Ther., 40, 587, 10.1016/j.clinthera.2018.02.015
Rosenfeld, 2015, Sex-specific placental responses in fetal development, Endocrinology., 156, 3422, 10.1210/en.2015-1227
Kalisch-Smith, 2017, Sex differences in rat placental development: from pre-implantation to late gestation, Biol. Sex Differ., 8, 17, 10.1186/s13293-017-0138-6
Tewari, 2011, Histological and histochemical changes in placenta of diabetic pregnant females and its comparision with normal placenta, Asian Pacific J. Trop. Dis., 1, 1, 10.1016/S2222-1808(11)60001-7
I.M. Evers, P.G.J. Nikkels, J.M. Sikkema, G.H. a Visser, Placental pathology in women with type 1 diabetes and in a control group with normal and large-for-gestational-age infants., Placenta. 24 (2003) 819–25. doi:https://doi.org/10.1016/S0143-4004(03)00128-0.
Memon, 2015, Gross and histological alteration in the placenta of mothers suffering from gestational diabetes, J. Liaquat Univ. Med. Heal. Sci., 14, 16
Meng, 2014, Ultrastructure of placenta of gravidas with gestional diabetes mellitus, Fertil. Steril., 102, 10.1016/j.fertnstert.2014.07.855
Edu, 2016, Placenta changes in pregnancy with gestational diabetes, Romanian J. Morphol. Embryol., 57, 507
Bhattacharjee, 2017, Histopathological study with immunohistochemical expression of vascular endothelial growth factor in placentas of hyperglycemic and diabetic women, J. Lab. Physicians., 9, 227, 10.4103/JLP.JLP_148_16
Serov, 2016, The role of morphology in mathematical models of placental gas exchange, J. Appl. Physiol., 120, 17, 10.1152/japplphysiol.00543.2015
Thunbo, 2018, Postpartum placental CT angiography in normal pregnancies and in those complicated by diabetes mellitus, Placenta., 69, 20, 10.1016/j.placenta.2018.06.309
Abdelghany, 2018, Study of the ultrastructure of the placenta in gestational diabetes mellitus, Int J Anat Var., 11, 4
Haucke, 2014, Accumulation of advanced glycation end products in the rabbit blastocyst under maternal diabetes, Reproduction., 148, 169, 10.1530/REP-14-0149
Kazemi-Darabadi, 2013, Healing of excisional wound in alloxan induced diabetic sheep: a planimetric and histopathologic study, Vet Res Forum., 4, 149
Howard, 1975, Basement membrane thickness in muscle capillaries of normal and spontaneously diabetic Macaca nigra, Diabetes., 24, 201, 10.2337/diab.24.2.201
Szkudelski, 2001, The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas, Physiol. Res., 50, 537
Cirkel, 1986, Effects of alloxan-induced diabetes mellitus on the metabolism of the rat placenta, Arch. Gynecol., 237, 155, 10.1007/BF02133859
R.F. Onegova, T.G. Raĭgorodskaia, [Morphologic studies of the placenta in alloxan diabetes]., Probl. Endokrinol. (Mosk). 25 (1979) 43–7.
Giachini, 2008, Maternal diabetes affects specific extracellular matrix components during placentation, J. Anat., 212, 31, 10.1111/j.1469-7580.2007.00839.x
Zorn TM, Zúñiga M, Madrid E, Tostes R, Fortes Z, Giachini F, San Martín S. Maternal diabetes affects cell proliferation in developing rat placenta, Histol. Histopathol. 26 (2011) 1049–1056. doi:10.14670/HH-26.1049.
Yamaguchi, 1985, Changes in the distribution of fibronectin in the placenta during normal human pregnancy, Am. J. Obstet. Gynecol., 152, 715, 10.1016/S0002-9378(85)80055-7
Sanches, 2017, Distinct effects of short- and long-term type 1 diabetes to the placental extracellular matrix and fetal development in mice, Placenta., 53, 1, 10.1016/j.placenta.2017.03.005
Dela Justina, 2018, O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels, Life Sci., 205, 18, 10.1016/j.lfs.2018.05.013
Bell, 1983, Decidualization and associated cell types: implications for the role of the placental bed in the materno-fetal immunological relationship, J. Reprod. Immunol., 5, 185, 10.1016/0165-0378(83)90234-6
Y.K. Sinzato, G.T. Volpato, I.L. Iessi, A. Bueno, I. de M.P. Calderon, M.V.C. Rudge, D.C. Damasceno, Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters, Exp. Diabetes Res. 2012 (2012) 1–7. doi:https://doi.org/10.1155/2012/108163.
Gül, 2015, Histopathological, ultrastructural and apoptotic changes in diabetic rat placenta, Balkan Med. J., 32, 296, 10.5152/balkanmedj.2015.15290
Pustovrh, 2005, Increased matrix metalloproteinases 2 and 9 in placenta of diabetic rats at midgestation, Placenta., 26, 339, 10.1016/j.placenta.2004.06.011
Padmanabhan, 2001, Intrauterine growth retardation in experimental diabetes: possible role of the placenta, Arch. Physiol. Biochem., 109, 260, 10.1076/apab.109.3.260.11596
Padmanabhan, 1990, Ultrastructural studies on the placentae of streptozotocin induced maternal diabetes in the rat, Z. Mikrosk. Anat. Forsch., 104, 212
Giavini, 1986, Effects of streptozotocin-induced diabetes on fetal development of the rat, Teratology., 34, 81, 10.1002/tera.1420340111
Lara, 2016, Placental structural abnormalities have detrimental hemodynamic consequences in a rat model of maternal hyperglycemia, Placenta., 44, 54, 10.1016/j.placenta.2016.06.002
Kumar, 2012, Acute and chronic animal models for the evaluation of anti-diabetic agents, Cardiovasc. Diabetol., 11, 1, 10.1186/1475-2840-11-9
S.K. Wong, K.-Y. Chin, F.H. Suhaimi, A. Fairus, S. Ima-Nirwana, Animal models of metabolic syndrome: a review, Nutr. Metab. (Lond). 13 (2016) 65. doi:https://doi.org/10.1186/s12986-016-0123-9.
Ellerman, 1993, Natural killer cell depletion and diabetes mellitus in the BB/Wor rat (revisited), Diabetologia., 36, 596, 10.1007/BF00404067
Makino, 1980, Breeding of a non-obese, diabetic strain of mice, Jikken Dobutsu., 29, 1
Yoshioka, 1997, A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice, Diabetes., 46, 887, 10.2337/diab.46.5.887
Durham, 2006, Development of insulin resistance and hyperphagia in Zucker fatty rats, Am. J. Physiol. Integr. Comp. Physiol., 290, R652, 10.1152/ajpregu.00428.2004
Tartaglia, 1995, Identification and expression cloning of a leptin receptor, OB-R, Cell., 83, 1263, 10.1016/0092-8674(95)90151-5
Goto, 1981, The spontaneous-diabetes rat: a model of noninsulin dependent diabetes mellitus, Proc. Japan Acad. Ser. B Phys. Biol. Sci., 57, 381, 10.2183/pjab.57.381
Zipris, 1996, Evidence that Th1 lymphocytes predominate in islet inflammation and thyroiditis in the BioBreeding (BB) rat, J. Autoimmun., 9, 315, 10.1006/jaut.1996.0043
Like, 1991, Influence of environmental viral agents on frequency and tempo of diabetes mellitus in BB/Wor rats, Diabetes., 40, 259, 10.2337/diab.40.2.259
Groen, 2015, Impaired trophoblast invasion and increased numbers of immune cells at day 18 of pregnancy in the mesometrial triangle of type 1 diabetic rats, Placenta., 36, 142, 10.1016/j.placenta.2014.12.004
Albaghdadi, 2017, Tacrolimus in the prevention of adverse pregnancy outcomes and diabetes-associated embryopathies in obese and diabetic mice, J. Transl. Med., 15, 32, 10.1186/s12967-017-1137-4
Lee, 2012, Development of a type II diabetic mellitus animal model using micropig®, Lab. Anim. Res., 28, 205, 10.5625/lar.2012.28.3.205
Wolf, 2014, Genetically engineered pig models for diabetes research, Transgenic Res., 23, 27, 10.1007/s11248-013-9755-y
Cho, 2018, Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system, Transgenic Res., 27, 289, 10.1007/s11248-018-0074-1
Shafrir, 1998, Cellular mechanism of nutritionally induced insulin resistance: the desert rodent PsÁMmomys Obesus and other animals in which insulin resistance leads to detrimental outcome, J. Basic Clin. Physiol. Pharmacol., 9, 347, 10.1515/JBCPP.1998.9.2-4.347
Shafrir, 2000, Overnutrition in spiny mice (Acomys cahirinus): β-cell expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet, Diabetes Metab. Res. Rev., 16, 94, 10.1002/(SICI)1520-7560(200003/04)16:2<94::AID-DMRR82>3.0.CO;2-U
Winzell, 2004, The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes, Diabetes., 53, S215, 10.2337/diabetes.53.suppl_3.S215
Li, 2013, Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta, Int. J. Clin. Exp. Pathol., 6, 650
Kim, 2014, Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the Mouse1, Biol. Reprod., 90, 1, 10.1095/biolreprod.113.117259
C.M. Reynolds, M.H. Vickers, C.J. Harrison, S.A. Segovia, C. Gray, Maternal high fat and/or salt consumption induces sexspecific inflammatory and nutrient transport in the rat placenta, Physiol. Rep. 3 (2015) 1–10. doi:10.14814/phy2.12399.
Liang, 2010, High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice, Metabolism., 59, 943, 10.1016/j.metabol.2009.10.015
Cabalín, 2019, Involvement of a 2B adenosine receptors as anti-inflammatory in gestational diabesity, Mol. Asp. Med., 66, 31, 10.1016/j.mam.2019.01.001
Subiabre, 2017, Maternal insulin therapy does not restore foetoplacental endothelial dysfunction in gestational diabetes mellitus, Biochim. Biophys. Acta - Mol. Basis Dis., 1863, 2987, 10.1016/j.bbadis.2017.07.022
Comisión Nacional de Obstetricia y Neonatología que asesora al Ministerio de Salud - Chile, Guía Perinatal, (2015). http://www.repositoriodigital.minsal.cl/bitstream/handle/2015/436/GUIA-PERINATAL_2015-PARA-PUBLICAR.pdf?sequence=1&isAllowed=y (accessed January 14, 2019).
Rudge, 2011, Histopathological placental lesions in mild gestational hyperglycemic and diabetic women, Diabetol. Metab. Syndr., 3, 19, 10.1186/1758-5996-3-19
Mitchell, 2008, Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. U. S. A., 105, 10513, 10.1073/pnas.0804549105