Pixel-level image fusion: A survey of the state of the art

Information Fusion - Tập 33 - Trang 100-112 - 2017
Shutao Li1, Xudong Kang1, Leyuan Fang1, Jianwen Hu2, Haitao Yin3
1College of Electrical and Information Engineering, Hunan University, Changsha, China
2College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China
3College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China

Tài liệu tham khảo

Web of science, (http://www.webofknowledge.com). Olshausen, 1996, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381, 607, 10.1038/381607a0 Rubinstein, 2010, Dictionaries for sparse representation modeling, Proc. IEEE, 98, 1045, 10.1109/JPROC.2010.2040551 Mertens, 2007, Exposure fusion, 382 Zhang, 1999, A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application, Proc. IEEE, 87, 1315, 10.1109/5.775414 Goshtasby, 2007, Image fusion: Advances in the state of the art, Inf. Fus., 8, 114, 10.1016/j.inffus.2006.04.001 Thomas, 2008, Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics, IEEE Transactions on Geoscience and Remote Sensing, 46, 1301, 10.1109/TGRS.2007.912448 Vivone, 2015, A critical comparison among pansharpening algorithms, IEEE Trans. Geosci. Remote Sensing, 53, 2565, 10.1109/TGRS.2014.2361734 Zhang, 2010, Multi-source remote sensing data fusion: status and trends, Int. J. Image Data Fus., 1, 5, 10.1080/19479830903561035 James, 2014, Medical image fusion: A survey of the state of the art, Inf. Fus., 19, 4, 10.1016/j.inffus.2013.12.002 Pajares, 2004, A wavelet-based image fusion tutorial, Pattern Recognit., 37, 1855, 10.1016/j.patcog.2004.03.010 Li, 2002, Using the discrete wavelet frame transform to merge landsat TM and SPOT panchromatic images, Inf. Fus., 3, 17, 10.1016/S1566-2535(01)00037-9 Lewis, 2007, Pixel- and region-based image fusion with complex wavelets, Inf. Fus., 8, 119, 10.1016/j.inffus.2005.09.006 Cands, 2001, Curvelets and curvilinear integrals, J. Approximation Theor., 113, 59, 10.1006/jath.2001.3624 Nencini, 2007, Remote sensing image fusion using the curvelet transform, Inf. Fus., 8, 143, 10.1016/j.inffus.2006.02.001 Do, 2002, Contourlets: a directional multiresolution image representation, vol. 1, I Li, 2011, Biological image fusion using a NSCT based variable-weight method, Inf. Fus., 12, 85, 10.1016/j.inffus.2010.03.007 Yang, 2010, Image fusion based on a new contourlet packet, Inf. Fus., 11, 78, 10.1016/j.inffus.2009.05.001 Yang, 2008, Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform, Neurocomputing, 72, 203, 10.1016/j.neucom.2008.02.025 Zhang, 2016, An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing, Infrared Phys. Technol., 74, 11, 10.1016/j.infrared.2015.11.003 Zhao, 2015, A fast fusion scheme for infrared and visible light images in NSCT domain, Infrared Phys. Technol., 72, 266, 10.1016/j.infrared.2015.07.026 Saeedi, 2011, A new pan-sharpening method using multiobjective particle swarm optimization and the shiftable contourlet transform, ISPRS J. Photogramm. Remote Sensing, 66, 365, 10.1016/j.isprsjprs.2011.01.006 Upla, 2015, An edge preserving multiresolution fusion: use of contourlet transform and MRF prior, IEEE Trans. Geosci. Remote Sensing, 53, 3210, 10.1109/TGRS.2014.2371812 Easley, 2008, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmonic Anal., 25, 25, 10.1016/j.acha.2007.09.003 Wang, 2014, Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients, Inf. Fus., 19, 20, 10.1016/j.inffus.2012.03.002 Wang, 2014, EGGDD: an explicit dependency model for multi-modal medical image fusion in shift-invariant shearlet transform domain, Inf. Fus., 19, 29, 10.1016/j.inffus.2013.04.005 Farbman, 2008, Edge-preserving decompositions for multi-scale tone and detail manipulation, ACM Trans. Graph., 27, 67:1, 10.1145/1360612.1360666 Hu, 2012, The multiscale directional bilateral filter and its application to multisensor image fusion, Inf. Fus., 13, 196, 10.1016/j.inffus.2011.01.002 Zhou, 2016, Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters, Inf. Fus., 30, 15, 10.1016/j.inffus.2015.11.003 Wang, 2015, Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis, Inf. Fus., 26, 103, 10.1016/j.inffus.2015.01.001 Redondo, 2009, Multifocus image fusion using the log-gabor transform and a multisize windows technique, Inf. Fus., 10, 163, 10.1016/j.inffus.2008.08.006 Yang, 2012, Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis, Inf. Fus., 13, 177, 10.1016/j.inffus.2010.09.003 Zheng, 2007, Multisource image fusion method using support value transform, IEEE Trans. Image Process., 16, 1831, 10.1109/TIP.2007.896687 Li, 2011, Performance comparison of different multi-resolution transforms for image fusion, Inf. Fus., 12, 74, 10.1016/j.inffus.2010.03.002 Pradhan, 2006, Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion, IEEE Trans. Geosci. Remote Sensing, 44, 3674, 10.1109/TGRS.2006.881758 Ben Hamza, 2005, A multiscale approach to pixel-level image fusion, Integrated Computer-Aided Engineering, 12, 135, 10.3233/ICA-2005-12201 Zheng, 2007, A new metric based on extended spatial frequency and its application to DWT based fusion algorithms, Inf. Fus., 8, 177, 10.1016/j.inffus.2005.04.003 Jang, 2012, Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex, IEEE Trans. Image Process., 21, 3479, 10.1109/TIP.2012.2197014 Piella, 2003, A general framework for multiresolution image fusion: from pixels to regions, Inf. Fus., 4, 259, 10.1016/S1566-2535(03)00046-0 Shen, 2013, Cross-scale coefficient selection for volumetric medical image fusion, IEEE Trans. Biomed. Eng., 60, 1069, 10.1109/TBME.2012.2211017 Li, 2013, Image fusion with guided filtering, IEEE Trans. Image Process., 22, 2864, 10.1109/TIP.2013.2244222 Yang, 2010, Multifocus image fusion and restoration with sparse representation, IEEE Trans. Instrum. Meas., 59, 884, 10.1109/TIM.2009.2026612 Pati, 1993, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, vol. 1, 40 Li, 2012, Group-sparse representation with dictionary learning for medical image denoising and fusion, IEEE Trans. Biomed. Eng., 59, 3450, 10.1109/TBME.2012.2217493 Chen, 2014, Image fusion with local spectral consistency and dynamic gradient sparsity, 2760 Yang, 2012, Pixel-level image fusion with simultaneous orthogonal matching pursuit, Inf. Fus., 13, 10, 10.1016/j.inffus.2010.04.001 Yin, 2011, Multimodal image fusion with joint sparsity model, Opt. Eng., 50, 067007.1, 10.1117/1.3584840 Yu, 2011, Image features extraction and fusion based on joint sparse representation, IEEE J. Selected Topics Signal Process., 5, 1074, 10.1109/JSTSP.2011.2112332 Yang, 2012, Color image fusion with extend joint sparse model, 376 Zhang, 2013, Dictionary learning method for joint sparse representation-based image fusion, Opt. Eng., 52, 057006.1, 10.1117/1.OE.52.5.057006 Yin, 2013, Simultaneous image fusion and super-resolution using sparse representation, Inf. Fus., 14, 229, 10.1016/j.inffus.2012.01.008 Li, 2013, Remote sensing image fusion via sparse representations over learned dictionaries, IEEE Transactions on Geoscience and Remote Sensing, 51, 4779, 10.1109/TGRS.2012.2230332 Nejati, 2015, Multi-focus image fusion using dictionary-based sparse representation, Inf. Fus., 25, 72, 10.1016/j.inffus.2014.10.004 Kim, 2016, Joint patch clustering-based dictionary learning for multimodal image fusion, Inf. Fus., 27, 198, 10.1016/j.inffus.2015.03.003 Wang, 2014, Fusion of multispectral and panchromatic images via sparse representation and local autoregressive model, Inf. Fus., 20, 73, 10.1016/j.inffus.2013.11.004 Zhu, 2013, A sparse image fusion algorithm with application to pan-sharpening, IEEE Trans. Geosci. Remote Sensing, 51, 2827, 10.1109/TGRS.2012.2213604 Zhang, 2016, Robust multi-focus image fusion using multi-task sparse representation and spatial context, IEEE Trans. Image Process. Gangapure, 2015, Steerable local frequency based multispectral multifocus image fusion, Inf. Fus., 23, 99, 10.1016/j.inffus.2014.07.003 Li, 2002, Multifocus image fusion using artificial neural networks, Pattern Recognit. Lett., 23, 985, 10.1016/S0167-8655(02)00029-6 Li, 2004, Fusing images with different focuses using support vector machines, IEEE Trans. Neural Netw., 15, 1555, 10.1109/TNN.2004.837780 Li, 2001, Combination of images with diverse focuses using the spatial frequency, Inf. Fus., 2, 169, 10.1016/S1566-2535(01)00038-0 De, 2013, Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure, Inf. Fus., 14, 136, 10.1016/j.inffus.2012.01.007 Bai, 2015, Quadtree-based multi-focus image fusion using a weighted focus-measure, Inf. Fus., 22, 105, 10.1016/j.inffus.2014.05.003 Li, 2008, Multifocus image fusion using region segmentation and spatial frequency, Image Vis. Comput., 26, 971, 10.1016/j.imavis.2007.10.012 Li, 2008, Region-based multi-focus image fusion, 343 Li, 2013, Image matting for fusion of multi-focus images in dynamic scenes, Inf. Fus., 14, 147, 10.1016/j.inffus.2011.07.001 Zhang, 2014, Multi-modal image fusion with KNN matting, vol. 484, 89 Liu, 2015, Multi-focus image fusion with dense SIFT, Inf. Fus., 23, 139, 10.1016/j.inffus.2014.05.004 Li, 2012, Fast multi-exposure image fusion with median filter and recursive filter, IEEE Trans. Consum. Electron., 58, 626, 10.1109/TCE.2012.6227469 Shen, 2011, Generalized random walks for fusion of multi-exposure images, IEEE Trans. Image Process., 20, 3634, 10.1109/TIP.2011.2150235 Shen, 2013, QoE-based multi-exposure fusion in hierarchical multivariate gaussian CRF, IEEE Trans. Image Process., 22, 2469, 10.1109/TIP.2012.2236346 Zhang, 2014, Multi-focus image fusion based on robust principal component analysis and pulse-coupled neural network, Optik - Int. J. Light Electron Opt., 125, 5002, 10.1016/j.ijleo.2014.04.002 Kumar, 2009, A total variation-based algorithm for pixel-level image fusion, IEEE Trans. Image Process., 18, 2137, 10.1109/TIP.2009.2025006 Tu, 2001, A new look at IHS-like image fusion methods, Inf. Fus., 2, 177, 10.1016/S1566-2535(01)00036-7 Tu, 2004, A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery, IEEE Geosci. Remote Sensing Lett., 1, 309, 10.1109/LGRS.2004.834804 Rahmani, 2010, An adaptive IHS pan-sharpening method, IEEE Geosci. Remote Sensing Lett., 7, 746, 10.1109/LGRS.2010.2046715 Choi, 2011, A new adaptive component-substitution-based satellite image fusion by using partial replacement, IEEE Trans. Geosci. Remote Sensing, 49, 295, 10.1109/TGRS.2010.2051674 Shahdoosti, 2016, Combining the spectral PCA and spatial PCA fusion methods by an optimal filter, Inf. Fus., 27, 150, 10.1016/j.inffus.2015.06.006 C.A. Laben, B.V. Brower, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, 2000, US Patent 6011875. Kang, 2014, Pansharpening with matting model, IEEE Transactions on Geoscience and Remote Sensing, 52, 5088, 10.1109/TGRS.2013.2286827 Mitianoudis, 2007, Pixel-based and region-based image fusion schemes using ICA bases, Inf. Fus., 8, 131, 10.1016/j.inffus.2005.09.001 Sun, 2013, Poisson image fusion based on markov random field fusion model, Inf. Fus., 14, 241, 10.1016/j.inffus.2012.07.003 Balasubramaniam, 2014, Image fusion using intuitionistic fuzzy sets, Inf. Fus., 20, 21, 10.1016/j.inffus.2013.10.011 Li, 2010, Hybrid multiresolution method for multisensor multimodal image fusion, IEEE Sens. J., 10, 1519, 10.1109/JSEN.2010.2041924 Liu, 2015, A general framework for image fusion based on multi-scale transform and sparse representation, Inf. Fus., 24, 147, 10.1016/j.inffus.2014.09.004 Jiang, 2014, Image fusion with morphological component analysis, Inf. Fus., 18, 107, 10.1016/j.inffus.2013.06.001 Wang, 2013, Image fusion with nonsubsampled contourlet transform and sparse representation, J. Electron. Imaging, 22, 10.1117/1.JEI.22.4.043019 Daneshvar, 2010, MRI and PET image fusion by combining IHS and retina-inspired models, Inf. Fus., 11, 114, 10.1016/j.inffus.2009.05.003 Zhang, 2005, An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images, Inf. Fus., 6, 225, 10.1016/j.inffus.2004.06.009 Palsson, 2016, Quantitative quality evaluation of pansharpened imagery: Consistency versus synthesis, IEEE Trans. Geosci. Remote Sensing, 54, 1247, 10.1109/TGRS.2015.2476513 Wang, 2009, Mean squared error: Love it or leave it? a new look at signal fidelity measures, IEEE Signal Process. Mag., 26, 98, 10.1109/MSP.2008.930649 Garzelli, 2009, Hypercomplex quality assessment of multi/hyperspectral images, IEEE Geosci. Remote Sensing Lett., 6, 662, 10.1109/LGRS.2009.2022650 LilloSaavedra, 2006, Spectral or spatial quality for fused satellite imagery? a tradeoff solution using the wavelet á trous algorithm, Int. J. Remote Sensing, 27, 1453, 10.1080/01431160500462188 Wang, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600, 10.1109/TIP.2003.819861 Zhang, 2011, FSIM: A feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 2378, 10.1109/TIP.2011.2109730 Xue, 2014, Gradient magnitude similarity deviation: A highly efficient perceptual image quality index, IEEE Trans. Image Process., 23, 684, 10.1109/TIP.2013.2293423 Capodiferro, 2012, Two-dimensional approach to full-reference image quality assessment based on positional structural information, IEEE Trans. Image Process., 21, 505, 10.1109/TIP.2011.2165293 Toet, 2010, Towards cognitive image fusion, Inf. Fus., 11, 95, 10.1016/j.inffus.2009.06.008 Qu, 2002, Information measure for performance of image fusion, Elec. Lett., 38, 313, 10.1049/el:20020212 Hossny, 2008, Comments on “Information measure for performance of image fusion”, Elec. Lett., 44, 1066, 10.1049/el:20081754 Cvejic, 2006, Image fusion metric based on mutual information and tsallis entropy, Elec. Lett., 42, 626, 10.1049/el:20060693 Hossny, 2010, Image fusion performance metric based on mutual information and entropy driven quadtree decomposition, Elec. Lett., 46, 1266, 10.1049/el.2010.1778 Wang, 2008, Performance evaluation of image fusion techniques, 469 Xydeas, 2000, Objective image fusion performance measure, Elec. Lett., 36, 308, 10.1049/el:20000267 Liu, 2008, A feature-based metric for the quantitative evaluation of pixel-level image fusion, Comput. Vis. Image Understand., 109, 56, 10.1016/j.cviu.2007.04.003 Yang, 2008, A novel similarity based quality metric for image fusion, Inf. Fus., 9, 156, 10.1016/j.inffus.2006.09.001 Petrović, 2015, Focused pooling for image fusion evaluation, Inf. Fus., 22, 119, 10.1016/j.inffus.2014.05.002 Hassen, 2015, Objective quality assessment for multiexposure multifocus image fusion, IEEE Trans. Image Process., 24, 2712, 10.1109/TIP.2015.2428051 Alparone, 2008, Multispectral and panchromatic data fusion assessment without reference, Photogramm. Eng. Remote Sensing, 74, 193, 10.14358/PERS.74.2.193 Han, 2015, Multimodal gray image fusion metric based on complex wavelet structural similarity, Optik-Int. J. Light Electron Opt., 126, 5842, 10.1016/j.ijleo.2015.08.250 Chen, 2007, A human perception inspired quality metric for image fusion based on regional information, Inf. Fus., 8, 193, 10.1016/j.inffus.2005.10.001 Han, 2013, A new image fusion performance metric based on visual information fidelity, Inf. Fus., 14, 127, 10.1016/j.inffus.2011.08.002 Liu, 2012, Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study, IEEE Trans. Pattern Anal. Mach. Intell., 34, 94, 10.1109/TPAMI.2011.109 Wei, 2010, Theoretical analysis of correlation-based quality measures for weighted averaging image fusion, Inf. Fus., 11, 301, 10.1016/j.inffus.2009.10.006 Ma, 2015, Perceptual quality assessment for multi-exposure image fusion, IEEE Trans. Image Process., 24, 3345, 10.1109/TIP.2015.2442920 Simone, 2002, Image fusion techniques for remote sensing applications, Inf. Fus., 3, 3, 10.1016/S1566-2535(01)00056-2 Bovolo, 2010, Analysis of the effects of pansharpening in change detection on vhr images, IEEE Geosci. Remote Sensing Lett., 7, 53, 10.1109/LGRS.2009.2029248 Palsson, 2012, Classification of pansharpened urban satellite images, IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 5, 281, 10.1109/JSTARS.2011.2176467 Fauvel, 2013, Advances in spectral-spatial classification of hyperspectral images, Proc. IEEE, 101, 652, 10.1109/JPROC.2012.2197589 Bioucas-Dias, 2012, Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 5, 354, 10.1109/JSTARS.2012.2194696 Song, 2014, Spatio-spectral fusion of satellite images based on dictionary-pair learning, Inf. Fus., 18, 148, 10.1016/j.inffus.2013.08.005 Alparone, 2004, Landsat ETM+ and SAR image fusion based on generalized intensity modulation, IEEE Trans. Geosci. Remote Sensing, 42, 2832, 10.1109/TGRS.2004.838344 Byun, 2013, An area-based image fusion scheme for the integration of SAR and optical satellite imagery, IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 6, 2212, 10.1109/JSTARS.2013.2272773 Brell, 2016, Improving sensor fusion: A parametric method for the geometric coalignment of airborne hyperspectral and LiDAR data, IEEE Trans. Geosci. Remote Sensing, 1 Wei, 2015, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Trans. Geosci. Remote Sensing, 53, 3658, 10.1109/TGRS.2014.2381272 Global land cover facility, (http://www.glcf.umiacs.umd.edu/data/). Digitalglobe, (https://www.digitalglobe.com/). Iwasaki, 2011, Hyperspectral imager suite (HISUI) -japanese hyper-multi spectral radiometer, 1025 Debes, 2014, Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest, IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 7, 2405, 10.1109/JSTARS.2014.2305441 Moser, 2015, 2015 IEEE GRSS data fusion contest: Extremely high resolution lidar and optical data [technical committees], IEEE Geosci. Remote Sensing Mag., 3, 40, 10.1109/MGRS.2015.2397448 Bhatnagar, 2013, Directive contrast based multimodal medical image fusion in NSCT domain, IEEE Trans. Multim., 15, 1014, 10.1109/TMM.2013.2244870 GholamHosseini, 2006, Fusion of vibro-acoustography images and X-ray mammography, 2803 Whole brain web site of the harvard medical school, (http://www.med.harvard.edu/AANLIB/home.html). Mcconnell brain imaging centre of the montreal neurological institute, (http://www.mouldy.bic.mni.mcgill.ca/brainweb). Hogervorst, 2010, Fast natural color mapping for night-time imagery, Inf. Fus., 11, 69, 10.1016/j.inffus.2009.06.005 Yamasaki, 2008, Denighting: Enhancement of nighttime images for a surveillance camera, 1 Schaul, 2009, Color image dehazing using the near-infrared, 1629 Gundimada, 2010, Face recognition in multi-sensor images based on a novel modular feature selection technique, Inf. Fus., 11, 124, 10.1016/j.inffus.2009.05.002 Wong, 2013, Eyeglasses removal of thermal image based on visible information, Inf. Fus., 14, 163, 10.1016/j.inffus.2011.09.002 Singh, 2008, Hierarchical fusion of multi-spectral face images for improved recognition performance, Inf. Fus., 9, 200, 10.1016/j.inffus.2006.06.002 Muller, 2009, Cognitively-engineered multisensor image fusion for military applications, Inf. Fus., 10, 137, 10.1016/j.inffus.2008.08.008 The EQUINOX face database, (http://www.face-rec.org/databases/). Raskar, 2005, Image fusion for context enhancement and video surrealism, 1 Petschnigg, 2004, Digital photography with flash and no-flash image pairs, ACM Trans. Graph., 23, 664, 10.1145/1015706.1015777 Petrović, 2007, Subjective tests for image fusion evaluation and objective metric validation, Inf. Fus., 8, 208, 10.1016/j.inffus.2005.05.001