Pinocembrin-7-Methylether Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction Through AKT and ERK Pathways

Zhi-Cong Zou1, Jijun Fu2, Yanan Dang2, Qian Zhang2, Xiufen Wang3, Hanbin Chen3, Xuejing Jia4, Simon Ming‐Yuen Lee3, Chuwen Li2,3
1Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
2Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
4College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anis E, Zafeer MF, Firdaus F, Islam SN, Khan AA, Hossain MM (2020) Perillyl alcohol mitigates behavioural changes and limits cell death and mitochondrial changes in unilateral 6-ohda lesion model of Parkinson’s disease Through Alleviation of Oxidative Stress. Neurotox Res 38:461–477

Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969

Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

Biolchi AM, de Oliveira DGR, Amaral HD, Campos GAA, Goncalves JC, de Souza ACB, Lima MR, Silva LP, Mortari MR (2020) Fraternine, a Novel Wasp Peptide, Protects against Motor Impairments in 6-OHDA Model of Parkinsonism. Toxins 12

Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830:3267–3288

Borland G, Bird RJ, Palmer TM, Yarwood SJ (2009) Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 284:17391–17403

Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717

de Lau LML, Giesbergen PCLM, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MMB (2004) Incidence of parkinsonism and Parkinson disease in a general population—the Rotterdam Study. Neurology 63:1240–1244

Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

Feng CW, Chen NF, Wen ZH, Yang WY, Kuo HM, Sung PJ, Su JH, Cheng SY, Chen WF (2019) In vitro and in vivo neuroprotective effects of stellettin B through anti-apoptosis and the Nrf2/HO-1 pathway. Mar Drugs 17

Fonseca-Fonseca LA, Nunez-Figueredo Y, Sanchez JR, Guerra MW, Ochoa-Rodriguez E, Verdecia-Reyes Y, Hernadez RD, Menezes NJ, Costa TCS, de Santana WA, Oliveira JL, Segura-Aguilar J, da Silva VDA, Costa SL (2019) KM-34, a novel antioxidant compound, protects against 6-hydroxydopamine-induced mitochondrial damage and neurotoxicity. Neurotox Res 36:279–291

Frede K, Ebert F, Kipp AP, Schwerdtle T, Baldermann S (2017) Lutein activates the transcription factor Nrf2 in human retinal pigment epithelial cells. J Agric Food Chem 65:5944–5952

Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 1842:1208–1218

Gao AM, Ke ZP, Shi F, Sun GC, Chen H (2013) Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 206:100–108

Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

Jo SH, Kim ME, Cho JH, Lee Y, Lee J, Park YD, Lee JS (2019) Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch Pharm Res 42:695–703

Kang KW, Cho IJ, Lee CH, Kim SG (2003) Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J Natl Cancer I 95:53–66

Kang S, Piao Y, Kang YC, Lim S, Pak YK (2020) Qi-activating quercetin alleviates mitochondrial dysfunction and neuroinflammation in vivo and in vitro. Arch Pharm Res 43:553–566

Khan NM, Sandur SK, Checker R, Sharma D, Poduval TB, Sainis KB (2011) Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium-ERK1/2-Nrf2 pathway. Free Radic Biol Med 51:115–128

Ko YH, Kwon SH, Kim SK, Lee BR, Hur KH, Kim YJ, Kim SE, Lee SY, Jang CG (2019) Protective effects of 6,7,4’-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch Pharm Res 42:1081–1091

Kong Y, Fu YJ, Zu YG, Liu W, Wang W, Hua X, Yang M (2009) Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Mill sp.] leaves. Food Chem 117:152–159

Lei H, Ren RT, Sun Y, Zhang K, Zhao X, Ablat N, Pu XP (2020) Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules 25

Liu RZ, Fan CX, Zhang ZL, Zhao X, Sun Y, Liu HH, Nie ZX, Pu XP (2017) Effects of Dl-3-n-butylphthalide on Cerebral Ischemia Infarction in Rat Model by Mass Spectrometry Imaging. Int J Mol Sci 18

Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

Madduma Hewage SRK, Piao MJ, Kang KA, Ryu YS, Fernando P, Oh MC, Park JE, Shilnikova K, Moon YJ, Shin DO, Hyun JW (2017) Galangin activates the ERK/AKT-driven Nrf2 signaling pathway to increase the level of reduced glutathione in human keratinocytes. Biomol Ther (seoul) 25:427–433

Manouchehrabadi M, Farhadi M, Azizi Z, Torkaman-Boutorabi A (2020) Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease. Neurotox Res 37:156–170

Marques NF, Massari CM, Tasca CI (2019) Guanosine protects striatal slices against 6-OHDA-induced oxidative damage, mitochondrial dysfunction, and ATP depletion. Neurotox Res 35:475–483

McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Mol Brain Res 141:128–137

Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

Park HJ, Lee KS, Zhao TT, Lee KE, Lee MK (2017) Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Arch Pharm Res 40:631–639

Patel NK, Bhutani KK (2014) Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-alpha and IL-1 beta production: In vitro and in vivo experimentation. Phytomedicine 21:946–953

Ren J, Yuan L, Wang W, Zhang M, Wang Q, Li S, Zhang L, Hu K (2019) Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway. Toxicol Appl Pharmacol 378:114617

Salinas M, Wang J, Rosa de Sagarra M, Martin D, Rojo AI, Martin-Perez J, Ortiz de Montellano PR, Cuadrado A (2004) Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett 578:90–94

Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25

Truong L, Gonnerman G, Simonich MT, Tanguay RL (2016) Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environ Pollut 218:1089–1093

Tufekci KU, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:314082

Varier KM, Sumathi T (2019) Hinokitiol offers neuroprotection against 6-OHDA-induced toxicity in SH-SY5Y neuroblastoma cells by downregulating mRNA expression of MAO/alpha-synuclein/LRRK2/PARK7/PINK1/PTEN genes. Neurotox Res 35:945–954

Wu N, Kong Y, Zu YG, Fu YJ, Liu ZG, Meng RH, Liu X, Efferth T (2011) Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine 18:110–118

Xian YF, Ip SP, Lin ZX, Mao QQ, Su ZR, Lai XP (2012) Protective effects of pinostrobin on beta-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 32:1223–1230

Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W, Ma J, Kong AN (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 5:1918–1926

Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

Zhang C, Li C, Chen S, Li Z, Jia X, Wang K, Bao J, Liang Y, Wang X, Chen M, Li P, Su H, Wan JB, Lee SMY, Liu K, He C (2017) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11

Zhang LQ, Sa F, Chong CM, Wang Y, Zhou ZY, Chang RC, Chan SW, Hoi PM, Yuen Lee SM (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3beta pathways. J Ethnopharmacol 170:8–15