Pilots’ gaze strategies and manual control performance using occlusion as a measurement technique during a simulated manual flight task

Cognition, Technology & Work - Tập 18 - Trang 529-540 - 2016
Andreas Haslbeck1, Klaus Bengler1
1Institute of Ergonomics, Technische Universität München, Garching, Germany

Tóm tắt

The aim of this study was to analyze pilots’ visual scanning under conditions visually restricted by the occlusion paradigm. During manual flight, pilots experienced interruptions in their panel scan due to concurring tasks and monitoring of distant displays. Eleven volunteer airline pilots performed several manual instrument landing system approaches in a fixed-base flight simulator. Some of these approaches were performed using the paradigm of occlusion with shutter glasses. Under occlusion, the gaze pattern analysis revealed that pilots demonstrated reduced mean glance durations, but did not reduce their attention to lesser information displays. The results also indicated that the attitude indicator (artificial horizon) as a preview instrument was less affected by occlusion compared to other areas of interest. A subsequent scanpath analysis revealed that vertical tracking was the predominant information acquisition strategy and corresponded to larger deviations on the glideslope. These results imply the need to optimize information even for short glances, and to be very cautious with adaptive layouts of free programmable or dynamic displays, and not to overburden the pilot flying with parallel tasks.

Tài liệu tham khảo

Anderson NC, Bischof WF, Laidlaw K, Risko EF, Kingstone A (2013) Recurrence quantification analysis of eye movements. Behav Res Methods 45(3):842–856. doi:10.3758/s13428-012-0299-5 Chen H-YW, Milgram P (2011) Determining fixed glance duration for visual occlusion research. In: Proceedings of the human factors and ergonomics society annual meeting, vol 55, no. 1, pp 1904–1908. doi:10.1177/1071181311551396 Childs JM, Spears WD (1986) Flight-skill decay and recurrent training. Percept Mot Skills 62(1):235–242. doi:10.2466/pms.1986.62.1.235 Colvin K, Dodhia R, Dismukes K (2005) Is pilots’ visual scanning adequate to avoid mid-air collisions? In: Proceedings of the 13th international symposium on aviation psychology, pp 104–109 Dick AO (1980) Instrument scanning and controlling: using eye movement data to understand pilot behavior and strategies. NASA Contractor Report, Rochester Ebbatson M, Harris D, Huddlestone J, Sears R (2010) The relationship between manual handling performance and recent flying experience in air transport pilots. Ergonomics 53(2):268–277. doi:10.1080/00140130903342349 Edwards RE, Tolin P, Jonsen GL (1982) Pilot visual behavior as a function of navigation and flight control modes in the Boeing 757/767. In: Proceedings of the human factors and ergonomics society annual meeting, vol 26, no. 5, pp 441–445. doi:10.1177/154193128202600513 Ellis SR, Stark L (1986) Statistical dependency in visual scanning. Hum Factors 28(4):421–438 European Union (2011) Commission Regulation (EU) No 1178/2011 of 3 November 2011. In: Official Journal of the European Union, vol 54 Flach JM (1990) Control with an eye for perception: precursors to an active psychophysics. Ecol Psychol 2(2):83–111. doi:10.1207/s15326969eco0202_1 Foulsham T, Kingstone A (2013) Optimal and preferred eye landing positions in objects and scenes. Q J Exp Psychol 66(9):1707–1728. doi:10.1080/17470218.2012.762798 Gelau C, Krems JF (2004) The occlusion technique: a procedure to assess the HMI of in-vehicle information and communication systems. Appl Ergon 35(3):185–187. doi:10.1016/j.apergo.2003.11.009 Gontar P, Haslbeck A (2012) Untersuchung der Nutzung des Primary Flight Displays durch Piloten unterschiedlicher Trainiertheit mittels Blickerfassung [Eye-Tracking Investigation of the Use of the Primary Flight Displays by Pilots of Different Practice]. In: Grandt M, Schmerwitz S (eds) Fortschrittliche Anzeigesysteme für die Fahrzeug- und Prozessführung: 54. Fachausschusssitzung Anthropotechnik, Bonn, pp 263–271 Gontar P, Thoma O, Haslbeck A (2013) Adaption hochgradig geübter psychomotorischer Muster an ungewohnte Simulationsumgebungen am Beispiel von Piloten [Adaptation of highly skilled psychomotor patterns to unfamiliar simulation environments using the example of pilots]. In: Grandt M, Schmerwitz S (eds) Ausbildung und Training in der Fahrzeug- und Prozessführung: 55. Fachausschusssitzung Anthropotechnik, Bonn, pp 169–181 Gray R, Geri GA, Akhtar SC, Covas CM (2008) The role of visual occlusion in altitude maintenance during simulated flight. J Exp Psychol Hum Percept Perform 34(2):475–488. doi:10.1037/0096-1523.34.2.475 Harris RL, Christhilf DM (1980) What do pilots see in displays? In: Proceedings of the human factors and ergonomics society annual meeting, vol 24, no. 1, pp 22–26. doi:10.1177/107118138002400106 Haslbeck A, Hörmann H-J (2016) Flying the needles: flight deck automation erodes fine-motor flying skills among airline pilots. Hum Factors 58(4):533–545. doi:10.1177/0018720816640394 Haslbeck A, Kirchner P, Schubert E, Bengler K (2014) A flight simulator study to evaluate manual flying skills of airline pilots. In: Proceedings of the human factors and ergonomics society annual meeting, vol 58, no. 1, pp 11–15. doi:10.1177/1541931214581003 Haslbeck A, Schneider A, Gontar P (2014) Analyse menschlicher Informationsverarbeitung am Beispiel manuellen Fliegens [Analysis of human information processing using the example of manual flying]. In: Gesellschaft für Arbeitswissenschaft (ed) Gestaltung der Arbeitswelt der Zukunft: Bericht zum 60. Kongress der Gesellschaft für Arbeitswissenschaft vom 12–14 März 2014. GFA-Press, Dortmund, pp 43–45 Hayashi M (2004) Hidden Markov Models for analysis of pilot instrument scanning and attention switching. Massachusetts Institute of Technology Helleberg JR, Wickens CD (2003) Effects of data-link modality and display redundancy on pilot performance: an attentional perspective. Int J Aviat Psychol 13(3):189–210. doi:10.1207/S15327108IJAP1303_01 International Air Transport Association (2016) Safety Report 2015, 52st edition, Montréal ISO (2007) Road vehicles—Ergonomic aspects of transport information and control systems—Occlusion method to assess visual demand due to the use of in-vehicle systems 13.180(ISO 16673:2007) ISO (2015) Road vehicles—measurement of driver visual behaviour with respect to transport information and control systems—part 1: Definitions and parameters 01.040.43(ISO 15007-1:2015) Jones DH (1985) An error-dependent model of instrument-scanning behavior in commercial airline pilots. NASA Contractor Report Kang Z, Landry SJ (2015) An eye movement analysis algorithm for a multielement target tracking task: maximum transition-based agglomerative hierarchical clustering. IEEE Trans Hum Mach Syst 45(1):13–24. doi:10.1109/THMS.2014.2363121 Krause M, Donant N, Bengler K (2015) Comparing occlusion method by display blanking to occlusion goggles. Proc Manuf 3:2650–2657. doi:10.1016/j.promfg.2015.07.622 Krems JF, Keinath A, Baumann M, Gelau C, Bengler K (2000) Evaluating visual display designs in vehicles: advantages and disadvantages of the occlusion technique. In: Camarinha-Matos LM, Afsarmanesh H, Erbe H-H (eds) Advances in networked enterprises: virtual organizations, balanced automation, and systems integration, vol 53. Springer, Heilderberg, pp 361–368 Liu A (1998) What the driver’s eye tells the car’s brain. Chapter 20. In: Underwood G (ed) Eye guidance in reading and scene perception. Elsevier Science Ltd, Amsterdam, pp 431–452 Milgram P (1987) A spectacle-mounted liquid-crystal tachistoscope. Behav Res Methods Instrum Comput 19(5):449–456 Monk CA, Boehm-Davis DA, Trafton JG (2002) The attentional costs of interrupting task performance at various stages. In: Proceedings of the human factors and ergonomics society annual meeting, vol 46, no. 22, pp 1824–1828. doi:10.1177/154193120204602210 Morris CH, Leung YK (2006) Pilot mental workload: how well do pilots really perform? Ergonomics 49(15):1581–1596. doi:10.1080/00140130600857987 Myers CW (2007) Scan pattern adaptation during repeated visual search. PhD Thesis, Rensselaer Polytechnic Institute National Transportation Safety Board (2014) Descent below visual glidepath and impact with seawall: Asiana Airlines Flight 214, Boeing 777-200ER, HL7742, San Francisco, California July 6, 2013. Accident Report. NTSB/AAR, Washington, DC Popp C, Kemény C (2016) One team. J Civil Aviat Train 27(2):26–28 Rantanen EM, Johnson NR, Talleur DA (2004) The effectiveness of personal computer aviation training device, a flight training device, and an airplane in conducting instrument proficiency checks: volume 2: objective pilot performance measures. Final Technical Report AHFD-04-16/FAA-04-6, Oklahoma City Sarter NB, Woods DD (1994) Pilot interaction with cockpit automation II: an experimental study of pilots’ model and awareness of the flight management system. Int J Aviat Psychol 4(1):1–28. doi:10.1207/s15327108ijap0401_1 Schutte PC, Trujillo AC (1996) Flight crew task management in non-normal situations. In: Proceedings of the human factors and ergonomics society annual meeting, vol 40, no. 4, pp 244–248. doi:10.1177/154193129604000422 Senders JW, Kristofferson AB, Levison WH, Dietrich CW, Ward JL (1967) The attentional demand of automobile driving. Paper sponsored by committee on highway safety and presented at the 46th annual meeting. Highway Research Record Shapiro KL, Raymond JE (1989) Training of efficient oculomotor strategies enhances skill acquisition. Acta Psychol 71(1–3):217–242. doi:10.1016/0001-6918(89)90010-3 SKYbrary (2016) Flight control laws. http://www.skybrary.aero/index.php/Flight_Control_Laws. Accessed 24 Feb 2015 Sleight RB (1948) The effect of instrument dial shape on legibility. J Appl Psychol 32(2):170–188. doi:10.1037/h0063435 Spady AA (1978) Airline pilot scan patterns during simulated ILS approaches. NASA Technical Paper, Hampton Steelman KS, McCarley JS, Wickens CD (2011) Modeling the control of attention in visual workspaces. Hum Factors 53(2):142–153. doi:10.1177/0018720811404026 Underwood G, Chapman P, Brocklehurst N, Underwood J, Crundall D (2003) Visual attention while driving: sequences of eye fixations made by experienced and novice drivers. Ergonomics 46(6):629–646. doi:10.1080/0014013031000090116 Unema P, Rötting M (1990) Differences in eye movements and mental workload between experienced and inexperienced motor-vehicle drivers. In: Brogan D, Gale AG, Carr K (eds) Visual search. Taylor & Francis, London, pp 193–202 van der Horst R (2004) Occlusion as a measure for visual workload: an overview of TNO occlusion research in car driving. Appl Ergon 35(3):189–196. doi:10.1016/j.apergo.2003.11.010 Wickens CD, Alexander AL (2009) Attentional tunneling and task management in synthetic vision displays. Int J Aviat Psychol 19(2):182–199. doi:10.1080/10508410902766549 Wickens CD, Hollands JG, Banbury S, Parasuraman R (2013) Engineering psychology and human performance, 4th edn. Pearson, Boston Zimmer AC, Stein M (2012) Information Systems in Transportation. In: Stein M, Sandl P (eds) Information ergonomics: a theoretical approach and practical experience in transportation. Springer, Heidelberg, pp 1–22