Pilot-Wave Quantum Theory in Discrete Space and Time and the Principle of Least Action

Foundations of Physics - Tập 46 - Trang 1502-1521 - 2016
Janusz Gluza1, Jerzy Kosek1
1Institute of Physics, University of Silesia, Katowice, Poland

Tóm tắt

The idea of obtaining a pilot-wave quantum theory on a lattice with discrete time is presented. The motion of quantum particles is described by a $$|\Psi |^2$$ -distributed Markov chain. Stochastic matrices of the process are found by the discrete version of the least-action principle. Probability currents are the consequence of Hamilton’s principle and the stochasticity of the Markov process is minimized. As an example, stochastic motion of single particles in a double-slit experiment is examined.

Tài liệu tham khảo

De Broglie, L.: La nouvelle dynamique des quanta. In: J. Bordet (Ed.): Électrons et photons. Rapports et discussions du cinquième Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay Gauthier-Villars, Paris (1928). English translation is included In: Bacciagalluppi, G. and Valentini, A. Quantum theory at the crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009) Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I and II. Phys. Rev. 85, 166 (1952) Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Trajectories and particle creation and annihilation in quantum field theory. J. Phys. A: Math. Gen. 36, 4143 (2003) Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bohmian mechanics and quantum field theory. Phys. Rev. Lett. 93, 090402 (2004) Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bell-type quantum field theories. J. Phys. A: Math. Gen. 38(4), R1 (2005) Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer-Verlag, Berlin (2013) Bell, J.S.: Beables for quantum field theory, CERN preprint CERN-TH. 4035/84; reprinted in [8] Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (2004) Vassallo, A., Esfeld, M.: A proposal for a Bohmian ontology of quantum gravity. Found. Phys. 44(1), 1 (2014) Zenil, H. (ed.): A Computable Universe: Understanding and Exploring Nature as Computation. World Scientific, Singapore (2013) Barrett, J., Leifer, M., Tumulka, R.: Bell’s jump process in discrete time. Europhys. Lett. 72(5), 685 (2005) Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows in Metric Spaces and in the Spaces of Probability Measures. Springer Science & Business Media (2008) Villani, C.: Optimal transport: old and new. In: Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966) Nelson, E.: Quantum fluctuations. Princeton University Press, Dordrecht (1985) Deotto, E., Ghirardi, G.C.: Bohmian mechanics revisited. Found. Phys. 28, 1 (1998) Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1 (1999) Vink, J.C.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48(3), 1808 (1993) Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966); reprinted in [8] Goldstein, S., Tumulka, R., Zanghì, N.: Bohmian trajectories as the foundation of quantum mechanics. In: Chattaray, P.K. (ed.): Quantum Trajectories. Taylor & Francis, Boca Raton (2010). arXiv:0912.2666 [quant-ph] Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Quantum hamiltonians and stochastic jumps. Commun. Math. Phys. 254, 129 (2005) Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1973) Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) Ghose, P., Majumdar, A.S., Guha, S., Sau, J.: Bohmian trajectories for photons. Phys. Lett. A 290(5), 205 (2001) Philippidis, C., Dewdney, C., Hiley, B.J.: Quantum interference and the quantum potential. Il Nuovo Cimento B, Series 11 52 (1), 15 (1979) Henson, J.: The causal set approach to quantum gravity. In: Oriti, D. (ed.): Approaches to quantum gravity: towards a new understanding of space, time and matter vol. 393 Cambridge University Press, New York (2009) Dowker, F., Henson, J., Sorkin, R.: Quantum gravity phenomenology, Lorentz invariance and discreteness. Mod. Phys. Lett. A 19(24), 1829 (2004) Valentini, A.: On Galilean and Lorentz invariance in pilot-wave dynamics. Phys. Lett. A 228(4), 215 (1997) Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31(2), 231 (1984) Rüschendorf, L.: The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70(1), 117 (1985) Pflug, G.Ch., Pichler, A.: Approximations for probability distributions and stochastic optimization problems. In: International Series in Operations Research & management Science, vol. 163, p. 343. Springer, New York (2011)