Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp đa thức từng đoạn
Tóm tắt
Công trình này trình bày phương pháp đa thức từng đoạn (PWP) như một công cụ mới có tiềm năng cao trong việc tìm kiếm các nghiệm xấp xỉ cho các phương trình vi phân phi tuyến. Hơn nữa, chúng tôi trình bày hai nghiên cứu trường hợp cho thấy sức mạnh của phương pháp này trong việc tạo ra các nghiệm xấp xỉ chính xác cao. Các loại phương trình phi tuyến đã được kiểm tra là một bài toán tiệm cận và một bài toán giá trị biên.
Từ khóa
#phương pháp đa thức từng đoạn #phương trình vi phân phi tuyến #nghiệm xấp xỉ #bài toán tiệm cận #bài toán giá trị biênTài liệu tham khảo
Abbasbandy S (2006) Homotopy perturbation method for quadratic riccati differential equation and comparison with adomians decomposition method. Appl Math Comput 172(1): 485–490. doi:10.1016/j.amc.2005.02.014. http://www.sciencedirect.com/science/article/pii/S0096300305002171
Abbasbandy S (2007) A new application of he’s variational iteration method for quadratic riccati differential equation by using adomian’s polynomials. J Comput Appl Math 207(1):59–63. doi:10.1016/j.cam.2006.07.012. http://www.sciencedirect.com/science/article/pii/S0377042706004614. Special Issue: Variational Iteration Method Reality, Potential, and Challenges
Bates D, Hauenstein J, Sommese A, Wampler C (2013) Bertini: software for numerical algebraic geometry. Available at http://www3.nd.edu/~sommese/bertini
Chang S (2010) A variational iteration method for solving troeschs problem. J Comput Appl Math 234(10):3043–3047
Filobello-Nino U, Vazquez-Leal H, Khan Y, Castaneda-Sheissa R, Yildirim A, Hernandez-Martinez L, Sanchez-Orea J, Castaneda-Sheissa R, Bernal FR (2012a) Hpm applied to solve nonlinear circuits: a study case. Appl Math Sci 6(85–88):4331–4344
Filobello-Nino U, Vazquez-Leal H, Castaneda-Sheissa R, Yildirim A, Hernandez-Martinez L, Pereyra-Diaz D, Perez-Sesma A, Hoyos-Reyes C (2012b) An approximate solution of blasius equation by using hpm method. Asian J Math Stat 5:50–59
Hassana H, El-Tawil M (2011) An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method. Math Methods Appl Sci 34:977–989
He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178(34):257–262
He JH (2004) Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156(2):527–539
He JH (2009) An elementary introduction to the homotopy perturbation method. Comput Math Appl 57(3):410–412
Khan Y, Vazquez-Leal H, Faraz N (2012a) An auxiliary parameter method using adomian polynomials and laplace transformation for nonlinear differential equations. Appl Math Model. doi:10.1016/j.apm.2012.06.026
Khan Y, Vazquez-Leal H, Hernandez-Martinez L (2012b) Removal of noise oscillation term appearing in the nonlinear equation solution. J Appl Math 2012:1–9. doi:10.1155/2012/387365
Khan Y, Vazquez-Leal H, Hernandez-Martinez L, Faraz N (2012c) Variational iteration algorithm-ii for solving linear and non-linear odes. Int J Phys Sci 7(25):3099–4002
Khan Y, Vazquez-Leal H, Wu Q (2012d) An efficient iterated method for mathematical biology model. Neural Comput Appl 1–6
Li S, Liao SJ (2005) An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl Math Comput 169(2):854–865
Tan Y, Abbasbandy S (2008) Homotopy analysis method for quadratic riccati differential equation. Commun Nonlinear Sci Numer Simulat 13(3):539–546. doi:10.1016/j.cnsns.2006.06.006. http://www.sciencedirect.com/science/article/pii/S100757040601353
Torres-Munoz D, Vazquez-Leal H, Hernandez-Martinez L, Sarmiento-Reyes A (2013) Improved spherical continuation algorithm with application to the double bounded homotopy (dbh). Comput Appl Math. (in press)
Tsai PY, Chen CK (2010) An approximate analytic solution of the nonlinear riccati differential equation. J Franklin Inst 347(10):1850–1862. doi:10.1016/j.jfranklin.2010.10.005. http://www.sciencedirect.com/science/article/pii/S001600321002322
Vazquez-Leal H (2102a) Rational homotopy perturbation method. J Appl Math 1–14. doi:10.1155/2012/490342
Vázquez-Leal H, Castañeda-Sheissa R, Filobello-Nino U, Sarmiento-Reyes A, Sánchez-Orea J (2012b) High accurate simple approximation of normal distribution related integrals. Math Problems Eng 2012:22
Vazquez-Leal H, Castaneda-Sheissa R, Rabago-Bernal F, Hernandez-Martinez L, Sarmiento-Reyes A, Filobello-Nino U (2011a) Powering multiparameter homotopy-based simulation with a fast path-following technique. ISRN Appl Math 2011:7 (Article ID 610637)
Vazquez-Leal H, Castaneda-Sheissa R, Yldrm A, Khan Y, Sarmiento-Reyes A, Jimenez-Fernandez V, Herrera-May A, Filobello-Nino U, Rabago-Bernal F, Hoyos-Reyes C (2012c) Biparameter homotopy-based direct current simulation of multistable circuits. British J Math Comput Sci 2(3):137–150
Vazquez-Leal H, Filobello-Nino U, Castaneda-Sheissa R, Hernandez-Martinez L, Sarmiento-Reyes A (2012d) Modified hpms inspired by homotopy continuation methods. Math Problems Eng 2012:19
Vazquez-Leal H, Hemandez-Martinez L, Sarmiento-Reyes A, Castaneda-Sheissa R (2005a) Numerical continuation scheme for tracing the double bounded homotopy for analysing nonlinear circuits. In: Proceedings of the 2005 international conference on communications, circuits and systems, Hong Kong, China, pp 1122–1126
Vazquez-Leal H, Hernandez-Martinez L, Sarmiento-Reyes A (2005b) Double-bounded homotopy for analysing nonlinear resistive circuits. In: International symposium on circuits and systems, vol 4, pp 3203–3206
Vazquez-Leal H, Hernandez-Martinez L, Sarmiento-Reyes A, Castaneda-Sheissa R, Gallardo-Del-Angel A (2011b) Homotopy method with a formal stop criterion applied to circuit simulation. IEICE Electr Express 8(21):1808–1815
Vazquez-Leal H, Marin-Hernandez A, Khan Y, Yldrm A, Filobello-Nino U, Castaneda-Sheissa R, Jimenez-Fernandez V (2013) Exploring collision-free path planning by using homotopy continuation methods. Appl Math Comput 219(14): 7514–7532. http://dx.doi.org/10.1016/j.amc.2013.01.038
Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Filobello-Nino U, Diaz-Sanchez A (2012e) Rational biparameter homotopy perturbation method and laplace-padé coupled version. J Appl Math pp. 1–21. doi:10.1155/2012/923975
Watson LT, Billups SC, Morgan AP (1987) Algorithm 652: hompack: a suite of codes for globally convergent homotopy algorithms. ACM Trans Math Softw 13:281–310
Wolf D, Sanders SR (1996) Multiparameter homotopy methods for finding dc operating points of nonlinear circuits. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 43(10):824–837