Khả năng phục hồi đất paddy bị ô nhiễm mangan bằng hai loài cây tích lũy mangan (Phytolacca americana và Polygonum hydropiper) có hỗ trợ của axit citric

Springer Science and Business Media LLC - Tập 25 - Trang 25933-25941 - 2018
Qing-wei Yang1, Hua-ming Ke1, Shou-jiang Liu1, Qing Zeng2
1National Engineering-Technology Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, People’s Republic of China
2Chongqing Zhongwang Energy Conservation and Environmental Protection Consulting Co. LTD, Chongqing, People’s Republic of China

Tóm tắt

Mục đích của nghiên cứu này là điều tra tiềm năng phục hồi sinh thái của hai loài cây tích lũy mangan, Phytolacca americana L. và Polygonum hydropiper L., trên đất paddy bị ô nhiễm mangan. Sự phát triển sinh khối, nồng độ Mn trong mô thực vật và hiệu quả tiềm năng loại bỏ Mn từ đất của hai loài cây này đã được nghiên cứu với axit citric, và cơ chế tác động của axit citric trên hai loài cây này đã được phân tích bằng cách kiểm tra hoạt động của rễ, hoạt động của enzyme superoxide dismutase (SOD), peroxidase (POD) và catalase (CAT) trong lá, cũng như nồng độ O2·− và H2O2 trong lá. Kết quả cho thấy rằng sinh khối của hai loài cây này được thúc đẩy ở mức axit citric thấp (3 mmol kg−1). Nồng độ Mn trong thực vật và lượng Mn được loại bỏ khỏi đất bởi thực vật thông qua việc thu hoạch được tăng cường khi áp dụng axit citric ở mức thấp và trung bình (10 mmol kg−1). Kết quả cũng cho thấy rằng hoạt động của rễ được tăng cường ở mức axit citric thấp và bị ức chế đáng kể dưới mức trung bình và cao (15 mmol kg−1), điều này cho thấy chức năng hỗ trợ của mức axit citric thấp và chức năng ức chế của mức cao trong việc phát triển sinh khối cây. Ở mức áp dụng axit citric thấp và trung bình, O2·− trong lá thực vật tăng mạnh, và hoạt động của SOD, POD và CAT cũng tăng mạnh, khiến nồng độ H2O2 rất giống với mẫu đối chứng, bảo đảm sức khỏe cho thực vật. Tuy nhiên, ở mức áp dụng axit citric cao, O2·− tiếp tục tăng mạnh, trong khi hoạt động của ba enzyme chống oxy hóa giảm mạnh, gây ra nồng độ hydrogen peroxide cao hơn nhiều so với mẫu đối chứng, do đó đe dọa sự sống còn của cây. Nghiên cứu hiện tại cho thấy tiềm năng của P. hydropiper trong việc phục hồi đất bị ô nhiễm với mức mangan tương đối thấp.

Từ khóa

#phytoremediation #manganese #phytotoxicity #antioxidant enzymes #citric acid

Tài liệu tham khảo

Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654 Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution ecology and phytochemistry. Biorecovery 1:81–126 Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water, pp 85–197 Bareen FE (2012) Chelate assisted phytoextraction using oilseed brassicas. Environ Pollut 21:289–311 Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis part 3—chemical methods Soil Science Society of America-American Society of Agronomy, pp 1085–1121 Brown JR, Warncke D (1988) Recommended cation tests and measures of cation exchange capacity. In: Dahnke WC (ed) Recommended chemical soil test procedures for the north central region, agricultural experimental station bulletin, pp 15–16 Deng H, Li MS, Chen YX (2009) Accumulating characteristics of manganese by Polygonum pubescens Blume. Acta Ecol Sin 29(10):5450–5454 (in Chinese) Dou CM, Chen XC, Shi JY, Chen YX (2010) Mn accumulation and detoxification in the root of hyperaccumulator pokeweed. Acta Pedol Sin 47(1):168–171 (in Chinese) Epstein AL, Gussman CD, Blaylock MJ, Yermiyahu U, Huang JW, Kapulnik Y, Orser CS (1999) EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208:87–94 Fang S, Tao Y, Zhang Y, Kong F, Wang Y (2018) Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality 30:469–474 Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92(2):213–217 Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York Huang GY, Liu XX (2013) The pharmacological and application research of Chinese medicine pokeweed. China Proc Med 8:249–250 (in Chinese) Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805 Kong XF, Tian T, Xue SG, Hartley W, Huang LB, Wu C, Li CX (2018) Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation. Land Degrad Dev 29(1):58–67 Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci and Technol 29:1232–1238 Liu J, Shang W, Zhang X, Zhu Y, Yu K (2014) Mn accumulation and tolerance in Celosia argentea L.: a new Mn-hyperaccumulating plant species. J Hazard Mater 267:136–141 Liu P, Tang XM, Gong CF, Xu GD (2010) Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil 335(1–2):385–395 Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M (2017) The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Environ Sci Pollut Res 24(23):19104–19113 McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co, and Mn from soils and sewage sludges. J Sci Food Agric 36(9):794–798 McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282 Michael JB and Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment, pp 53–70 Ministry of Environmental Protection of P.R. China (MEP) (1990) The background values of China’s soils, pp 287–358 Mizuno T, Emori K, Ito S (2013) Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch et Sav and its correlation with calcium accumulation. Soil Sci Plant Nutr 59(4):591–602 Nelson DW, Sommers LE (1982) Total carbon organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis part 2 American Society of Agronomy Madison, pp 539–580 Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167(3):733–742 Ren LM, Liu P, Cai MZ, Xu GD, Fang XY, Cheng ZX (2007) Physiological response of Polygonum hydropiper, Comnyza canadensis, Polygonum perfoliatum and Phytolacca americana to manganese toxicity. J Soil Water Conser 21(3):81–85 (in Chinese) Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamya H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazar Mater 318:587–599 Steele MC, Pichtel J (1998) Ex-situ remediation of a metal contaminated superfund soil using selective extractants. J Environ Eng 124(7):639–645 Syers JK, Williams JDH, Walker TW (1968) The determination of total phosphorus in soils and parent materials. New Zeal J Agr Res 11(4):757–762 Tőzsér D, Magura T, Simon E (2017) Heavy metal uptake by plant parts of willow species: a meta-analysis. J Hazard Mater 336:101–109 Tőzsér D, Harangi S, Baranyai E, Lakatos G, Fülöp Z, Tóthmérész B, Simon E (2018) Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Environ Sci Pollut Res 25(4):3275–3290 Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154 Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide amion radicals in plants. Plant Physiol Com 26(6):55–57 (in Chinese) Wang H, Tang SM, Liao XJ, Cao Q, Yang A, Wang TZ (2007) A new manganese hyperaccumulator: Polygonum hydropiper L. Ecol Environ 16(3):830–834 (in Chinese) Wang J, Ye S, Xue SG, Hartley W, Wu H (2018a) The physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. Int Biodeterior Biodegrad 128(3):11–14 Wang J, Cheng QY, Xue SG, Rajendran M, Wu C, Liao JX (2018b) Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environ Sci Pollut Res 25(10):9998–10005 Wood BW, Chaney R, Crawford M (2006) Correcting micronutrient deficiency using metal hyperaccumulators: Alyssum biomass as a natural product for nickel deficiency correction. Hortic Sci 41(5):1231–1234 Xie Q, Li Z, Yang L, Lü J, Jobe TO, Wang QA (2015) Newly identified passive hyperaccumulator Eucalyptus grandis × Europhylla under manganese stress. PLoS One 10(9):e0136606 Xue SG, Chen YX, Lin Q, Xu SY, Wang YP (2003) Phytolacca acinosa Roxb (Phytolaccaceae): a new manganese hyperaccumulator plant from Southern China. Acta Ecol Sin 23(5):935–937 (in Chinese) Xue SG, Ye S, Zhou F, Tian SX, Wang J, Xu SY, Chen YX (2008) Identity of Phytolacca americana L (Phytolaccaceae) Pokeweed: a manganese hyperaccumulator plant. Acta Ecol Sin 28(12):6344–6347 (in Chinese) Xue SG, Zhu F, Wu C, Lei J, Hartley W, Pan WS (2016) Effects of manganese on the microstructures of Chenopodium ambrosioides L., a manganese tolerant plant. Int J Phytoremediat 18(7):710–719 Xue SG, Shi LZ, Wu C, Wu H, Qin YY, Pan WS, Hartley W, Cui MQ (2017) Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res 156:23–30 Xue S, Wang J, Wu C, Song Li HW, Wu H, Zhu F, Cui M (2018) Physiological response of Polygonum perfoliatum L. following exposure to elevated manganese concentrations. Environ Sci Pollut Res 25(1):132–140 Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator Schima superba. Plant Soil Environ 54(10):441–446 Yeh TY, Lin CL, Lin CF, Chen CC (2012) Chelator-enhanced phytoextraction of copper and zinc by sunflower, Chinese cabbage, cattails and reeds. Int J Environ Sci Te 12(1):327–340 Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963 Yuan M, Tie BQ, Tang MZ, Isao A (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner Eng 20(2):188–190 Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P (2015) Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut R 22(23):18801–18813 Zhang C, Sale PWG, Clark GJ, Liu WX, Doronila AI, Kolev SD, Caixian SD, Tang CX (2015) Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb and Zn. Environ Sci Pollut Res 22(23):18824–18838 Zhou JH, Yang QW, Lan CY, Ye ZH (2010) Heavy metal uptake and extraction potential of two Bechmeria nivea (L) Gaud (Ramie) varieties associated with chemical reagents. Water Air Soil Pollut 211:359–366 Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242 Zhu F, Cheng QY, Xue SG, Li CX, Hartley W, Wu C, Tian T (2018) Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas. Land Degrad Dev 29(1):138–149