Phytoplankton and nutrients in the Helgoland region

Springer Science and Business Media LLC - Tập 42 - Trang 435-467 - 1988
Max Gillbricht1
1Biologische Anstalt Helgoland (Zentrale), Hamburg 52, Federal Republic of Germany

Tóm tắt

During recent decades, phytoplankton stock on the one hand and inorganic nutrients (P and bound N) on the other have increased considerably in the southern North Sea, as demonstrated at a permanent station (since 1962) near the island Helgoland. This correlation between phytoplankton and inorganic P and N need not have anything to do with causality; exceptional algal blooms have been observed and reported in the literature since in the 19th century. Furthermore, these increases (four-fold for phytoplankton and two-fold for nutrients) are in the same range as the fluctuations from year to year under different hydrographical conditions. A detailed investigation carried out in 1981 demonstrated the presence of a slowly growing phytoplankton population. Starting with a considerable stock of flagellates in spring, it reached a peak in cell numbers over a long reproduction period which contrasted with the normal duration of a spring bloom of diatoms. These processes were not related to a limited production by P or N. A considerable concentration of these nutrients was permanently available in the form of inorganic compounds. The total amount of nutrients surpassed by far the portion incorporated in the phytoplankton. This is a consequence of the fact that small organisms have a high metabolic rate. Therefore, the relation between stock and production (daily production ≈stock) is completely different from that known e.g. in agriculture. The nutrients exist during the vegetation period mainly in the form of dissolved organic matter that is accessible to plankton. The great dynamics of this system, including a phase shifting during the year between inorganic P, N, Si, and production, indicates the significance of permanent and fast remineralization. Calculations demonstrate that the natural nutrient content of seawater normally satisfies the demands of phytoplankton present in the North Sea area under study. Only in the more productive coastal region (salinity<30 associated with fresh water run-offs of low nutrient content — an unrealistic assumption in the German Bight) might some limitation be observed. For diatoms, silicate may represent a critical component, but a high dynamic force exists in the presence of small Si concentrations. Therefore, a lack of silicon must not represent any limitation; however, knowledge on the silicon system is insufficient up to now.

Tài liệu tham khảo

ARGE Elbe, 1982. Wassergütedaten der Elbe von Schnackenburg bis zur See 1981. — Wassergütestelle Elbe, Hamburg, 80 pp. Armstrong, F. A. J. & Harvey, H. W., 1950. The cycle of phosphorus in the waters of the English Channel. — J. mar. biol. Ass. U. K.29, 145–162. Baars, J. W. M., 1981. Autecological investigations on marine diatoms. 2. Generation times of 50 species.—Hydrobiol. Bull.15, 137–151. Bätje, M. & Michaelis, H., 1986.Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea).—Mar. Biol.93, 21–27. Baur, E., 1902. Ueber zwei denitrificirende Bakterien aus der Ostsee.—Wiss. Meeresunters. (Abt. Kiel)6, 9–21. Bennekom, A. J. van, Gieskes, W. W. C. & Tijssen, S. B., 1975. Eutrophication of Dutch coastal waters.—Proc. R. Soc. Lond. (B)189, 359–374. Birge, E. A. & Juday, C., 1926. Organic content of lake water—Bull. Bur. Fish., Wash.42, 185–205. Braarud, T. & Føyn, B., 1931. Beiträge zur Kenntnis des Stoffwechsels im Meere.—Avh. norske VidenskAkad. Oslo. (Mat.-nat. Kl.)14, 1–24. Brandt, K., 1899. Ueber den Stoffwechsel im Meere.—Wiss. Meeresunters. (Abt. Kiel)4, 213–230. Brandt, K., 1902. Ueber den Stoffwechsel im Meere. 2. Abhandlung.—Wiss. Meeresunters. (Abt. Kiel)6, 23–79. Brandt, K. & Raben, E., 1920. Zur Kenntnis der chemischen Zusammensetzung des Planktons und einiger Bodenorganismen.—Wiss. Meeresunters. (Abt. Kiel)19, 175–210. Butler, E. I., Knox, S. & Liddicoat, M. I., 1979. The relationship between inorganic and organic nutrients in the sea water.—J. mar. biol. Ass. U. K.59, 239–250. Cadée, G. C., 1986. Increased phytoplankton primary production in the Marsdiep area (Western Dutch Wadden Sea).—Neth. J. Sea Res.20, 285–290. Chapra, S. C. & Robertson, A., 1977. Great Lakes eutrophication: The effect of point source control of total phosphorus.—Science, N. Y.196, 1448–1450. Cooper, L. H. N., 1933. Chemical constituents of biological importance in the English Channel, November 1930 to January 1932. Part II. Hydrogen ion concentration, excess base, carbon dioxide, and oxygen.—J. mar. biol. Ass. U. K.18, 729–753. Cooper, L. H. N., 1952. Factors affecting the distribution of silicate in the Northern Atlantic Ocean and the formation of North Atlantic deep water.—J. mar. biol. Ass. U. K.30, 511–526. Eberlein, K., Leal, M. T., Hammer, K. D. & Hickel, W., 1985. Dissolved organic substances during aPhaeocystis pouchetii bloom in the German Bight (North Sea).—Mar. Biol.89, 311–316. Elbrächter, M., 1977. On population dynamics in multi-species cultures of diatoms and dinoflagellates. —Helgoländer wiss. Meeresunters.30, 192–200. Fleming, R. H., 1939. Composition of plankton and units for reporting populations and production.—Proc. 6th Pacif. Sci. Congr.3, 535–540. Flynn, K. J. & Butler, I., 1986. Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids.—Mar. Ecol. Prog. Ser.34, 281–304. Fogg, G. E., 1958. Extracellular products of phytoplankton and the estimation of primary production. —Rapp. P.-v. Réun. Cons. int. Explor. Mer144, 56–60. Gassmann, G. & Gillbricht, M., 1982. Correlations between phytoplankton, organic detritus and carbon in North Sea waters during the Fladenground Experiment (FLEX '76).—Helgoländer Meeresunters.35, 253–262. Gillbricht, M., 1952. Untersuchungen zur Produktionsbiologie des Planktons in der Kieler Bucht II: Die Produktionsgröße.—Kieler Meeresforsch.9, 51–61. Gillbricht, M., 1955. Wucherungen von Phytoplankton in einem abgeschlossenen Hafenbecken.—Helgoländer wiss. Meeresunters.5, 141–168. Gillbricht, M., 1956. Die Hydrographie des Jadebusens und der Innenjade.—Veröff. Inst. Meeresforsch Bremerhaven4, 153–170. Gillbricht, M., 1959. Die Planktonverteilung in der Irminger See im Juni 1955.—Ber. dt. wiss. Kommn Meeresforsch.15, 260–275. Gillbricht, M., 1969. Calculations in marine planktology. Practical and theoretical problems.—Int. Revue ges. Hydrobiol.54, 645–660. Gillbricht, M., 1974. Ein Problem bei der Berechnung von Regressionsgeraden.—Ber. dt. wiss. Kommn Meeresforsch.23, 120–129. Gillbricht, M., 1977. Phytoplankton distribution in the upwelling area off NW Africa.—Helgoländer wiss. Meeresunters.29, 417–438. Gillbricht, M., 1983. Eine “red tide” in der südlichen Nordsee und ihre Beziehungen zur Umwelt.—Helgoländer Meeresunters.36, 393–426. Goedecke, E., 1956. Über das Verhalten des Oberflächensalzgehaltes in der Deutschen Bucht während der Jahre 1873–1944 in Verbindung mit langjährigen Salzgehaltsreihen der südlichen Nordsee.—Ber. dt. wiss. Kommn Meeresforsch.14, 109–146. Goering, J. J., Nelson, D. M. & Carter, J. A., 1973. Silicid uptake by natural populations of marine phytoplankton.—Deep Sea Res.20, 777–789. Grasshoff, K., 1976. Methods of seawater analysis. Verl. Chemie, Weinheim, 317 pp. Grill, E. V. & Richards, F. A., 1964. Nutrient regeneration from phytoplankton decomposing in sea water.—J. mar. Res.22, 51–69. Hagmeier, E., 1961. Plankton-Äquivalente.—Kieler Meeresforsch.17, 32–47. Hart, T. J., 1934. On the phytoplankton of the South-West Atlantic and the Bellinghausen Sea, 1929–31.—Discovery Rep.8, 1–268. Hart, T. J., 1942. Phytoplankton periodicity in Antarctic surface waters.—Discovery Rep.21, 261–356. Hensen, V., 1887. Über die Bestimmung des Plankton's oder des im Meere treibenden Materials an Pflanzen und Thieren.—Ber. Kommn wiss. Unters. dt. Meere5, 1–107. Hoffmann, C., 1956. Untersuchungen über die Remineralisation des Phosphors im Plankton.—Kieler Meeresforsch.12, 25–36. Johnston, R. & Jones, P. G. W., 1965. Inorganic nutrients in the North Sea—Ser. Atlas mar. Environ.11, 1–3. Juday, C. & Birge, E. A., 1931. A second report on the phosphorus content of Wisconsin lake waters. —Trans. Wis. Acad. Sci. Arts Lett.26, 353–382. Jørgensen, E. G., 1955a. Variations in silica content of diatoms.—Physiologia Pl.8, 840–845. Jørgensen, E. G., 1955b. Solubility of silica in diatoms.—Physiologia Pl.8, 846–851. Kalle, K., 1937. Nährstoff-Untersuchungen als hydrographisches Hilfsmittel zur Unterscheidung von Wasserkörpern.—Annln Hydrogr. Berlin65, 1–18. Kalle, K., 1953. Der Einfluß des englischen Küstenwassers auf den Chemismus der Wasserkörper in der südlichen Nordsee—Ber. dt. wiss. Kommn Meeresforsch.13, 130–135. Ketchum, B. H., 1947. The biochemical relations between marine organisms and their environment. —Ecol. Monogr.17, 309–315. Krey, J., 1953. Plankton- und Sestonuntersuchungen in der südwestlichen Nordsee auf der Fahrt der „Gauss” Februar/März 1952.—Ber. dt. wiss. Kommn Meeresforsch.13, 136–153. Lewin, J. C., 1961. The dissolution of silica from diatom walls.—Geochim. Cosmochim. Acta21, 182–198. Nansen, F., 1902. On hydrometers and the surface tension of liquids.—Scient. Results Norw. N. polar Exped.3 (10), 1–87. Nathanson, A., 1906. Über die Bedeutung vertikaler Wasserbewegungen für die Produktion des Planktons im Meere.—Abh. sächs. Akad. Wiss. (Math.-phys. Kl.)5, 359–441. Nordli, E., 1957. Experimental studies on the ecology of Ceratia.—Oikos8, 200–265. Paasche, E., 1973. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species.—Mar. Biol.19, 262–269. Postma, H., 1966. The cycle of nitrogen in the Wadden sea and adjacent areas.—Neth. J. Sea. Res.3, 186–221. Postma, H., 1973. Transport and budget of organic matter in the North Sea.—In: North Sea science. Ed. by E. D. Goldberg, The MIT Press, Cambridge, Mass., 326–334. Postma, H., & Kalle, K., 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe.—Dt. hydrogr. Z.8, 137–144. Raben, E., 1914. Vierte Mitteilung über quantitative Bestimmungen von Stickstoffverbindungen im Meerwasser und Boden, sowie von gelöster Kieselsäure im Meerwasser.—Wiss. Meeresunters. (Abt. Kiel)16, 207–229. Redfield, A. C., Ketchum, B. H. & Richards, F. A., 1963. The influence of organisms on the composition of sea water.—In: The sea. Ed. by M. N. Hill. Wiley, New York,2, 26–77. Richards, F. A., 1958. Dissolved silicate and related properties of some western North Atlantic and Caribbean waters.—J. mar. Res.17, 449–465. Sakshaug, E., Andresen, K., Myklestad, S. & Olsen, Y., 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition.—J. Plankt. Res.5, 175–196. Sakshaug, E. & Olsen, Y., 1986. Nutrient status of phytoplankton blooms in Norwegian waters and algal strategies for nutrient competition—Can. J. Fish. aquat. Sci.43, 389–396. Schell, D. M., 1974. Uptake and regeneration of free amino acids in marine waters of Southeast Alaska.—Limnol. Oceanogr.19, 260–270. Schöne, H., 1977. Die Vermehrungsrate mariner Planktondiatomeen als Parameter in der Ökosystemanalyse. Habil. Schr., RWTH Aachen, 323 pp. Schreiber, E. 1927. Die Reinkultur von marinem Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers.—Wiss. Meeresunters. (Abt. Helgoland)16 (10), 1–34. Steele, J. H., 1958. Production studies in the Northern North Sea.—Rapp. P.-v. Réun. Cons. int. Explor. Mer.144, 79–84. Steemann Nielsen, E. & Hansen, V. K., 1959. Measurement with the carbon-14 technique of the respiration rates in natural populations of phytoplankton.—Deep Sea Res.5, 222–233. Steiner, M., 1938. Zur Kenntnis des Phosphatkreislaufs in Seen.—Naturwissenschaften26, 723–724. Steuer, A., 1910. Planktonkunde. Teubner, Leipzig, 723 pp. Stewart, A. J. & Wetzel, R. G., 1982. Phytoplankton contribution to alkaline phosphatase activity.—Arch. Hydrobiol.93, 265–271. Taft, J. L., Taylor, W. R., & McCarthy, J. J., 1975. Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay estuary, USA.—Mar. Biol.33, 21–32. Tarapchak, S. J. & Nalewajko, C., 1986. Introduction: Phosphorus-Plankton Dynamics Symposium.—Can. J. Fish. aquat. Sci.43, 293–301. Thomas, W. H., Dodson, A. N. & Reid, F. M. H., 1978. Diatom productivity compared to other algae in natural marine phytoplankton assemblages.—J. Phycol.14, 250–253. Verlencar, X. N., 1985. Urea as nitrogen source for phytoplankton production in coastal waters of Goa.—Indian J. mar. Sci.14, 93–97. Weichart, G., 1986. Nutrients in the German Bight, a trend analysis.—Dt. hydrogr. Z.39, 197–206. Williams, P. J. le B., 1975. Biological and chemical aspects of dissolved and organic material in sea water.—In: Chemical oceanography. Ed. by J. P. Riley & U. G. Skirrow, Acad. Press, London,2, 301–357. Zeitzschel, B. 1980. Sediment-water interactions in nutrient dynamics—In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 195–218. (The Belle W. Baruch Library in Marine Science 11.)