Phytochemical mediated synthesis of ZnO:Dy3+ nanophosphors: Judd–Ofelt analysis, structural and spectroscopic properties
Tài liệu tham khảo
Dahoumane, 2016, Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga, J. Nanoparticle Res., 18, 79, 10.1007/s11051-016-3378-1
Sinha, 2009, Nanoparticles fabrication using ambient biological resources, J. Appl. Biosci., 19, 1113
Azizi, 2014, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Mater. Lett., 116, 275, 10.1016/j.matlet.2013.11.038
Abdul Salam, 2014, Green synthesis and characterization of zinc oxide Nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-LAMIACEAE leaf extract, Mater. Lett., 131, 16, 10.1016/j.matlet.2014.05.033
Happy Agarwal, 2017, A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach, Res Effic Technol, 3, 406
Dobrucka, 2016, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J. Biol. Sci., 23, 517, 10.1016/j.sjbs.2015.05.016
Dorcheh, 2017, Biosynthesis of Nanoparticles by Fungi: Large-Scale Production., 395
Wongpreecha, 2018, One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity, Carbohydr. Polym., 199, 641, 10.1016/j.carbpol.2018.07.039
Bunzli, 2006, Benefiting from the unique properties of lanthanide ions, Acc. Chem. Res., 39, 53, 10.1021/ar0400894
Speghini, 2011, Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family, Opt. Mater., 33, 247, 10.1016/j.optmat.2010.10.039
Yang, 2017, Tailoring lanthanide doping in perovskite CaTiO3 for luminescence applications, Phys. Chem. Chem. Phys., 19, 16189, 10.1039/C7CP01953J
Sangeetha, 2011, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties, Mater. Res. Bull., 46, 2560, 10.1016/j.materresbull.2011.07.046
Mirzaei, 2017, Zinc oxide nanoparticles: biological synthesis and biomedical applications, Ceram. Int., 43, 907, 10.1016/j.ceramint.2016.10.051
Kavithaa, 2016, Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cells through facile biosynthesized zinc oxide nanorods, Karbala Int. J. Mod. Sci, 2, 46, 10.1016/j.kijoms.2016.01.002
Guo, 2018, Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses, Infrared Phys.Techn., 89, 115, 10.1016/j.infrared.2018.01.002
Wang, 2017, Mid-infrared photo-luminescence and energy transfer around 2.8 lm from Dy3+/Tm3+ co-doped tellurite glass, Infrared Phys. Technol., 85, 128, 10.1016/j.infrared.2017.06.010
Li, 2017, Spectroscopic characterizations of Dy: LaF3 crystal, Infrared Phys. Technol., 87, 65, 10.1016/j.infrared.2017.09.024
Remya Mohan, 2017, Judd–Ofelt analysis, structural and spectroscopic properties of sol–gel derived LaNbO4: Dy3+ phosphors, J. Mater. Sci. Mater. Electron., 14
Chemingui, 2015, Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4, J. Lumin., 166, 82, 10.1016/j.jlumin.2015.05.018
Maruyama, 1992, Zinc oxide thin films prepared by chemical vapour deposition from zinc acetate, J. Mater. Sci. Lett., 11, 170, 10.1007/BF00724682
Hasnidawani, 2016, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19, 211, 10.1016/j.proche.2016.03.095
Khalil, 2014, Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex, Arab. J. Chem., 7, 1178, 10.1016/j.arabjc.2013.10.025
Talam, 2012, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles, Int Sch Res Netw ISRN Nanotechnol, 6
Chen, 2011, Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition, Appl. Surf. Sci., 257, 3446, 10.1016/j.apsusc.2010.11.043
Zhang, 2009, Photoluminescence and ZnO → Eu3+ energy transfer in Eu3+-doped ZnO nanospheres, J. Phys. D Appl. Phys., 42
Saleem, 2012, Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by sol-gel method, Int. J. Phys. Sci., 23, 2971
Shafi, 2015, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals, AIP Adv., 5
Bindu, 2014, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8, 123, 10.1007/s40094-014-0141-9
Elumalai, 2015, Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity, Adv. Powder Technol., 26, 1639, 10.1016/j.apt.2015.09.008
Elumalai, 2015, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract ofAzadirachta indica (L.), Appl. Surf. Sci., 345, 329, 10.1016/j.apsusc.2015.03.176
Wahab, 2009, Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process, Solid State Sci., 11, 439, 10.1016/j.solidstatesciences.2008.07.009
Reddy Yadav, 2018, Biosynthesised ZnO : Dy3+ nanoparticles: biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid, Eur. Phys. J. Plus, 133, 153, 10.1140/epjp/i2018-11963-6
Mofokeng, 2017, Structure and optical properties of Dy 3+ activated sol-gel ZnO-TiO 2 nanocomposites, J. Alloys Compd., 711, 121, 10.1016/j.jallcom.2017.03.345
Amira, 2017, Spectroscopic properties of Dy3+ doped ZnO for white luminescence applications, Spectrochim. Acta Mol. Biomol. Spectrosc., 177, 164, 10.1016/j.saa.2017.01.039
Taziwa, 2017, Structural, morphological and Raman scattering studies of carbon doped ZnO nanoparticles fabricated by PSP technique, J. Nanosci. Nanotechnol. Res., 1, 3
Raji, 2017, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing, J. Sci.: Advanced Materials and Devices, 2, 51
Morales, 2007, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures, Rev. Mexic. Fisica, 53, 18
Carnall, 1968, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys., 49, 4424, 10.1063/1.1669893
Surendra Babu, 2009, Optical properties of Dy3+- doped phosphate and fluorophosphate glasses, Opt. Mater., 31, 624, 10.1016/j.optmat.2008.06.019
Babu, 2011, Spectroscopic and photoluminescence properties of Dy3+ -doped lead tungsten tellurite glasses for laser materials, J. Alloys Compd., 509, 457, 10.1016/j.jallcom.2010.09.058
Saleem, 2011, Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses, J. Quant. Spectrosc. Radiat. Transfer, 112, 78, 10.1016/j.jqsrt.2010.08.017
Walrand, 1998
Judd, 1962, Optical absorption intensities of rare-earth ions, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750
Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 37, 511, 10.1063/1.1701366
Krishna, 2018, Dy3+ ions doped oxy-fluoro boro tellurite glasses for the prospective optoelectronic device applications, J. Alloys Compd., 762, 814, 10.1016/j.jallcom.2018.05.191
Kesavulu, 2011, White light emission in Dy3+-doped lead fluoro phosphate glasses, Mater. Chem. Phys., 130, 1078, 10.1016/j.matchemphys.2011.08.037
Vijayakumar, 2015, Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED's and laser applications, J. Alloys Compd., 652, 234, 10.1016/j.jallcom.2015.08.219