Phytochemical mediated synthesis of ZnO:Dy3+ nanophosphors: Judd–Ofelt analysis, structural and spectroscopic properties

Prathibha Vasudevan1, Viji Vidyadharan2, Sanu Mathew Simon3, Unnikrishnan N. V3
1Research and Post Graduate Department of Physics, St. Thomas College, Kozhencherry, 689 641, Pathanamthitta, Kerala, India
2Department of Optoelectronics, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
3School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India

Tài liệu tham khảo

Dahoumane, 2016, Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga, J. Nanoparticle Res., 18, 79, 10.1007/s11051-016-3378-1 Sinha, 2009, Nanoparticles fabrication using ambient biological resources, J. Appl. Biosci., 19, 1113 Azizi, 2014, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Mater. Lett., 116, 275, 10.1016/j.matlet.2013.11.038 Abdul Salam, 2014, Green synthesis and characterization of zinc oxide Nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-LAMIACEAE leaf extract, Mater. Lett., 131, 16, 10.1016/j.matlet.2014.05.033 Happy Agarwal, 2017, A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach, Res Effic Technol, 3, 406 Dobrucka, 2016, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J. Biol. Sci., 23, 517, 10.1016/j.sjbs.2015.05.016 Dorcheh, 2017, Biosynthesis of Nanoparticles by Fungi: Large-Scale Production., 395 Wongpreecha, 2018, One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity, Carbohydr. Polym., 199, 641, 10.1016/j.carbpol.2018.07.039 Bunzli, 2006, Benefiting from the unique properties of lanthanide ions, Acc. Chem. Res., 39, 53, 10.1021/ar0400894 Speghini, 2011, Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family, Opt. Mater., 33, 247, 10.1016/j.optmat.2010.10.039 Yang, 2017, Tailoring lanthanide doping in perovskite CaTiO3 for luminescence applications, Phys. Chem. Chem. Phys., 19, 16189, 10.1039/C7CP01953J Sangeetha, 2011, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties, Mater. Res. Bull., 46, 2560, 10.1016/j.materresbull.2011.07.046 Mirzaei, 2017, Zinc oxide nanoparticles: biological synthesis and biomedical applications, Ceram. Int., 43, 907, 10.1016/j.ceramint.2016.10.051 Kavithaa, 2016, Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cells through facile biosynthesized zinc oxide nanorods, Karbala Int. J. Mod. Sci, 2, 46, 10.1016/j.kijoms.2016.01.002 Guo, 2018, Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses, Infrared Phys.Techn., 89, 115, 10.1016/j.infrared.2018.01.002 Wang, 2017, Mid-infrared photo-luminescence and energy transfer around 2.8 lm from Dy3+/Tm3+ co-doped tellurite glass, Infrared Phys. Technol., 85, 128, 10.1016/j.infrared.2017.06.010 Li, 2017, Spectroscopic characterizations of Dy: LaF3 crystal, Infrared Phys. Technol., 87, 65, 10.1016/j.infrared.2017.09.024 Remya Mohan, 2017, Judd–Ofelt analysis, structural and spectroscopic properties of sol–gel derived LaNbO4: Dy3+ phosphors, J. Mater. Sci. Mater. Electron., 14 Chemingui, 2015, Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4, J. Lumin., 166, 82, 10.1016/j.jlumin.2015.05.018 Maruyama, 1992, Zinc oxide thin films prepared by chemical vapour deposition from zinc acetate, J. Mater. Sci. Lett., 11, 170, 10.1007/BF00724682 Hasnidawani, 2016, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19, 211, 10.1016/j.proche.2016.03.095 Khalil, 2014, Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex, Arab. J. Chem., 7, 1178, 10.1016/j.arabjc.2013.10.025 Talam, 2012, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles, Int Sch Res Netw ISRN Nanotechnol, 6 Chen, 2011, Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition, Appl. Surf. Sci., 257, 3446, 10.1016/j.apsusc.2010.11.043 Zhang, 2009, Photoluminescence and ZnO → Eu3+ energy transfer in Eu3+-doped ZnO nanospheres, J. Phys. D Appl. Phys., 42 Saleem, 2012, Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by sol-gel method, Int. J. Phys. Sci., 23, 2971 Shafi, 2015, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals, AIP Adv., 5 Bindu, 2014, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8, 123, 10.1007/s40094-014-0141-9 Elumalai, 2015, Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity, Adv. Powder Technol., 26, 1639, 10.1016/j.apt.2015.09.008 Elumalai, 2015, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract ofAzadirachta indica (L.), Appl. Surf. Sci., 345, 329, 10.1016/j.apsusc.2015.03.176 Wahab, 2009, Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process, Solid State Sci., 11, 439, 10.1016/j.solidstatesciences.2008.07.009 Reddy Yadav, 2018, Biosynthesised ZnO : Dy3+ nanoparticles: biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid, Eur. Phys. J. Plus, 133, 153, 10.1140/epjp/i2018-11963-6 Mofokeng, 2017, Structure and optical properties of Dy 3+ activated sol-gel ZnO-TiO 2 nanocomposites, J. Alloys Compd., 711, 121, 10.1016/j.jallcom.2017.03.345 Amira, 2017, Spectroscopic properties of Dy3+ doped ZnO for white luminescence applications, Spectrochim. Acta Mol. Biomol. Spectrosc., 177, 164, 10.1016/j.saa.2017.01.039 Taziwa, 2017, Structural, morphological and Raman scattering studies of carbon doped ZnO nanoparticles fabricated by PSP technique, J. Nanosci. Nanotechnol. Res., 1, 3 Raji, 2017, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing, J. Sci.: Advanced Materials and Devices, 2, 51 Morales, 2007, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures, Rev. Mexic. Fisica, 53, 18 Carnall, 1968, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys., 49, 4424, 10.1063/1.1669893 Surendra Babu, 2009, Optical properties of Dy3+- doped phosphate and fluorophosphate glasses, Opt. Mater., 31, 624, 10.1016/j.optmat.2008.06.019 Babu, 2011, Spectroscopic and photoluminescence properties of Dy3+ -doped lead tungsten tellurite glasses for laser materials, J. Alloys Compd., 509, 457, 10.1016/j.jallcom.2010.09.058 Saleem, 2011, Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses, J. Quant. Spectrosc. Radiat. Transfer, 112, 78, 10.1016/j.jqsrt.2010.08.017 Walrand, 1998 Judd, 1962, Optical absorption intensities of rare-earth ions, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750 Ofelt, 1962, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys., 37, 511, 10.1063/1.1701366 Krishna, 2018, Dy3+ ions doped oxy-fluoro boro tellurite glasses for the prospective optoelectronic device applications, J. Alloys Compd., 762, 814, 10.1016/j.jallcom.2018.05.191 Kesavulu, 2011, White light emission in Dy3+-doped lead fluoro phosphate glasses, Mater. Chem. Phys., 130, 1078, 10.1016/j.matchemphys.2011.08.037 Vijayakumar, 2015, Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED's and laser applications, J. Alloys Compd., 652, 234, 10.1016/j.jallcom.2015.08.219