Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications
Tóm tắt
Unlike chemical techniques, the combination of metal oxide nanoparticles utilizing plant concentrate is a promising choice. The purpose of this work was to synthesize magnesium oxide nanoparticles (MgO-NPs) utilizing heartwood aqueous extract of Pterocarpus marsupium. The heartwood extract of Pterocarpus marsupium is rich in polyphenolic compounds and flavonoids that can be used as a green source for large-scale, simple, and eco-friendly production of MgO-NPs. The phytoassisted synthesis of MgO is characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with EDS (energy dispersive X-ray spectroscopy), and transmission electron microscopy (TEM). The formation of MgO-NPs is confirmed by a visual color change from colorless to dark brown and they displayed a wavelength of 310 nm in UV-Spectrophotometry analysis. The crystalline nature of the obtained biosynthesized nanoparticles are revealed by X-ray diffraction analysis. SEM results revealed the synthesized magnesium oxide nanoparticles formed by this cost-effective method are spherically shaped with an average size of < 20 nm. The presence of magnesium and oxygen were confirmed by the EDS data. TEM analysis proved the spherical shape of the nanoparticles with average particle size of 13.28 nm and SAED analysis confirms the crystalline nature of MgO-NPs. FT-IR investigation confirms the existence of the active compounds required to stabilize the magnesium oxide nanoparticles with hydroxyl and carboxyl and phenolic groups that act as reducing, stabilizing, and capping agent. All the nanoparticles vary in particle sizes between 15 and 25 nm and obtained a polydispersity index value of 0.248. The zeta-potential was measured and found to be − 2.9 mV. Further, MgO-NPs were tested for antibacterial action against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) by minimum inhibitory concentration technique were found to be potent against both the bacteria. The blended nanoparticles showed good antioxidant activity examined by the DPPH radical scavenging method, showed good anti-diabetic activity determined by alpha-amylase inhibitory activity, and displayed strong anti-inflammatory activity evaluated by the albumin denaturation method. The investigation reports the eco-friendly, cost-effective method for synthesizing magnesium oxide nanoparticles from Pterocarpus marsupium Rox.b heartwood extract with biomedical applications.
Tài liệu tham khảo
Abdelghany TM, Al-Rajhi AMH, Al Abboud MA et al (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions—a review. Bionanoscience 8:5–16
Irshad R, Tahir K, Li B, Ahmad A, Siddiqui AR, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanopartciles: a view towards green chemistry. J Photochem Photobiol B 170:241–246. https://doi.org/10.1016/j.jphotobiol.2017.04.020
Mirzaei H, Davoodnia A (2012) Microwave-assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chin J Catal 33:1502–1507
Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol Mol Biol 11:1–16
Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng. https://doi.org/10.1002/cben.201500018
Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. https://doi.org/10.1155/2014/359316
Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170
Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—review. Colloids Surf B 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027
Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky M, Kalinina N (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44
Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. https://doi.org/10.1039/C1GC15386B
Emmanuel R, Palanisamy S, Chen SM, Chelladurai K, Padmavathy S, Saravanan M, Prakash P, Ali MA, Al-Hemaid FM (2015) Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater Sci Eng 56:374–379
Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47(1):844–851. https://doi.org/10.1080/21691401.2019.1577878
Subhan A, Irshad R, Nazir S, Tahir K, Ahmad A, Khan AU, Khan ZUIH (2019) A new study of biomediated Pd/tiO2: a competitive system for Escherichia coli inhibition and radical stabilization. Mater Res Express 6:125430. https://doi.org/10.1088/2053-1591/ab5eaa
Rafique M, Sadaf I, Rafique MS et al (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291
Nguyen NHA, Padil VVT, Slaveykova VI, Cernik M, Sevcu A (2018) Green synthesis of metal and metal oxide nanoparticles and their effect on the Unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett 13:159. https://doi.org/10.1186/s11671-018-2575-5
Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128
Singh J, Kumar V, Kim K-H, Rawata M (2019) Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res 177:108569
Mathur P, Jha S, Ramteke S et al (2017) Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol 46:1–12
Liang SH, Gay ID (1986) A carbon-13 solid-state NMR study of the chemisorption and decomposition of ethanol on magnesium oxide. J Catal 101(2):293–300
Tsuji H, Yagi F, Hattori H, Kita H (1994) Self-condensation of n butyraldehyde over solid base catalysts. J Catal 148(2):759–770
Hussain AA, Nazir S, Irshad R, Tahir K, Raza M, Khan ZUIH, Khan AU (2020) Synthesis of functionalized mesoporous Ni-SBA-16 decorated with MgO nanoparticles for Cr (VI) adsorption and an effective catalyst for hydrodechlorination of chlorobenzene. Mater Res Bull 133:111059. https://doi.org/10.1016/j.materresbull.2020.111059
Bhargava A, Alarco JA, Mackinnon ID, Page D, Ilyush-echkin A (1998) Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2 Sr2 CaCu2 O8. Mater Lett 34(3–6):133–142
Yuan YS, Wang SS (1996) Solid-state processing and phase development of bulk (MgO)w/BPSCCO high-temperature superconducting composite. J Mater Res 11(1):8–17
Yang PD, Lieber CM (1996) Nanorod-superconductor composites: a pathway to high critical current density materials. Science 273:1836–1849
Kaur J, Singh J, Rawat M (2019) An efficient and blistering reduction of 4-nitrophenol by green synthesized silver nanoparticles. SN Appl Sci 1:1060. https://doi.org/10.1007/s42452-019-1088-x
Singh J, Kumar V, Jolly SS, Kim K-H, Rawata M, Kukkara D, Tsange YF (2019) Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J Industr Eng Chem 80:247–257
Singh J, Mehta A, Rawata M, Basub S (2018) Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J Environ Chem Eng 6:1468–1474
Singh J, Kukkar P, Sammi H, Rawat M, Singh G, Kukkar D (2017) Enhanced catalytic reduction of 4-nitrophenol and congo red dye By silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure. Particul Sci Technol. https://doi.org/10.1080/02726351.2017.1390512
Singh K, Kukkar D, Singh R, Kukkar P, Bajaj N, Singh J, Rawat M, Kumar A, Kim K-H (2020) In situ green synthesis of Au/Ag nanostructures on a metal-organic framework surface for photocatalytic reduction of p-nitrophenol. J Industr Eng Chem 81:196–205. https://doi.org/10.1016/j.jiec.2019.09.008
Rawat M, Singh J, Singh J, Singh C, Singh A, Kukkar D, Kumar S (2017) Synthesis of Cu and Ce-doped ZnO nanoparticles: crystallographic, optical, molecular, morphological and magnetic studies. Mater Sci 35(2). https://doi.org/10.1515/msp-2017-0040
Kaur S, Singh J, Rawat R et al (2018) A smart LPG sensor based on chemo-bio synthesized MgO nanostructure. J Mater Sci 29:11679–11687. https://doi.org/10.1007/s10854-018-9266-y
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bacterial agents. Langmuir 18:6679–6686
Lin ST, Klabunde JK (1985) Thermally activated magnesium oxide surface chemistry. Adsorption and decomposition of phosphorus compounds. Langmuir 1(5):600–605
Moorthy SK, Ashok CH, Venkateswara Rao K, Viswanathan C (2015) Synthesis and characterization of MgO nanoparticles by Neem leaves through green method. Mater Today Proc 2:4360–4368
Kumar D, Reddy Yadav LS, Lingaraju K, Manjunath K, Suresh D, Prasad D, Nagabhushana H, Sharma SC, Raja Naika H, Chikkahanumantharayappa NG (2015) Combustion synthesis of MgO nanoparticles using plant extract: structural characterization and photoluminescence studies. AIP Conf Proc 1665:050145
Awwad AM, Ahmad AL (2014) Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arab J Phys Chem 1(2):66
Sugirtha P, Divya R, Yedhukrishnan R, Suganthi KS, Anusha N, Ponnusami V, Rajan KS (2015) Green synthesis of magnesium oxide nanoparticles using Brassica oleracea and Punica granatum peels and their anticancer and photocatalytic activity. Asian J Chem 27(7):2513–2517
Gupta P, Jain V, Pareek A, Kumari P, Singh R, Agarwal P, Sharma V (2017) Evaluation of effect of alcoholic extract of heartwood of Pterocarpus marsupium on in vitro antioxidant, anti-glycation, sorbitol accumulation and inhibition of aldose reductase activity. J Tradition Complement Med:307–314
Rani P, Kaur G, Rao KV et al (2020) Impact of green synthesized metal oxide nanoparticles on seed germination and seedling growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram). J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01551-4
Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim K-H (2019) The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Product 214:1061–1070
Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z et al (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50:1076–1085
Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5:567–587
Singh J, Dutta T, Kim K et al (2018) Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(84). https://doi.org/10.1186/s12951-018-0408-4
Prathna TC, Mathew L, Chandrasekaran N et al (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. Biomimetics Learn Nat. https://doi.org/10.5772/8776
Ahmad N, Sharma S, Alam MK et al (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
Rajgovind G, Sharma DK, Gupta ND, Jasuja SC, Joshi C (2015) Pterocarpus marsupium derived phyto-synthesis of copper oxide nanoparticles and their antimicrobial activities. J Microb Biochem Technol 7:140–144
Perera HK (2016) Antidiabetic effects of Pterocarpus marsupium. Eur J Med Plants 13(4):1–14
Maruthupandian A, Mohan VR (2011) Antidiabetic, Antihyperlipidaemic and Antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats. Int J Pharma Techchnol 3(3):1681–1687
Rajeeb M, Usman M, Pathan EK, Jain BV, Pawar SR (2018) Ethnobotanical uses, phytochemistry and pharmacological activities of Pterocarpus marsupium. A review of Ph and Sci Innov, pp 1–5. https://doi.org/10.5530/pj.2018.6s.1
Manickam M, Ramanathan M, Farboodniay Jahromi MA, Chansouria JP, Ray AB (1997) Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60(6):609–610
Rastogi RP, Mehrotra BN (1982) Compendium of Indian medicinal plants, vol 1993. PID, New Delhi, p 537
Pant DR, Pant ND, Saru DB, Yadav UN, Khanal DP (2017) Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol 6(2):170
Vergheese M, Kiran Vishal S (2018) Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem 7(3):1193–1200
Das B, Moumita S, Ghosh S, Khan MI, Indira O, Jayabalan R, Tripathy SK, Mishra A, Balasubramanian P (2018) Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater Sci Eng. https://doi.org/10.1016/j.msec.2018.05.059
Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182
Sharma G, Soni R, Jasuja ND (2018) Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci 11(3):471–477. https://doi.org/10.1016/j.jtusci.2016.09.004
Perveen S, Safdar N, Chaudhry G-e-s, Yasmin A (2018) Antibacterial evaluation of silver nanoparticles synthesized from lychee peel: individual versus antibiotic conjugated effects. World J Microbiol Biotechnol 34:118
Dobrucia R (2018) Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iran J Sci Technol Trans Sci 42:547–555. https://doi.org/10.1007/s40995-016-0076-x
Ammulu MA, Vinay Viswanath K, Ajay Kumar G, Mangamuri U, Poda S (2020) Pterocarpus marsupium Rox b. heartwood extract synthesized chitosan nanoparticles and its biomedical applications. J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-020-00033-x
Meva FE, Mbeng JO, Ebongue CO, Schlüsener C, Kokcam-Demir U, Ntoumba AA, Kedi PB, Elanga E, Loudang ER, Nkoo MH, Tchoumbi E, Deli V, Nanga CC, Mpondo EA, Janiak C (2019) Stachytarpheta cayennensis aqueous extract, a new bioreactor towards silver nanoparticles for biomedical applications. J Biomater Nanobiotechnol 10:102–119. https://doi.org/10.4236/jbnb.2019.102006
Safaei-Ghomia J, Zahedia S, Javida M, Ghasemzadeh MA (2015) MgO nanoparticles: an efficient, green and reusable catalyst for the one-pot syntheses of 2,6-dicyanoanilines and 1,3-diarylpropyl malononitriles under different conditions. J Nanostruct 5:153–160
Khan MI, Akhtar MN, Ashraf N et al (2020) Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci 10:2351–2364. https://doi.org/10.1007/s13204-020-01414-x
Jeevanandam J, Chan YS, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced modified nucleation. New J Chem. https://doi.org/10.1039/C6NJ03176E
Tamilselvi P, Yelilarasi A, Hema M, Anbarasan R (2013) Synthesis of hierarchical structured MgO by sol-gel method. Nano Bull 2:130106
Ahmad H, Rajgopal K (2015) Pharmacology of Pterocarpus marsupium Roxb. Med Plant Res 5(3). https://doi.org/10.5376/mpr.2015.05.0003
Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size paramaters. Eur J Pharm Biopharm 69:1–9. https://doi.org/10.1016/j.ejpb.2007.08.001
Essien R, Astasie VN, Okeafor AO, Nwude DO (2019) Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett. https://doi.org/10.1007/s40089-019-00290-w
Navalon S, Garcia H (2016) Nanoparticles for catalysis. Nanomater 6:123. https://doi.org/10.3390/nano6070123
Narendhran S, Manikandan M, Baby Shakila P (2019) Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull Mater Sci 42:133. https://doi.org/10.1007/s12034-019-1811-7
Jeevanandam J, Chan YS, Danquah MK (2019) Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles. Particul Sci Technol:1548–0046. https://doi.org/10.1080/02726351.2019.1566938
Essien ER, Atasie VN, Oyebanji TO et al (2020) Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chem Pap 74:2101–2109. https://doi.org/10.1007/s11696-020-01056-x
Subba B, Srivastav C, Kandel RC (2016) Scientific validation of medicinal plants used by Yakkha community of Chanuwa VDC, Dhankuta, Nepal. Springerplus 5:155
Patel MB, Mishra SM (2009) Aldose reductase inhibitory activity and anti catraract potential of some traditionally acclaimed antidiabetic medicinal plants. Orient Pharm Exp Med 9:245–251
Abirami B, Gayathri P, Uma D (2012) In vitro antioxidant potential of Pterocarpus marsupium bark. Int J Chem Pharm Sci 3:17–24
Sushma NJ, Prathyusha D, Swathi G et al (2016) Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea characterization and in vitro antioxidant studies. Appl Nanosci 6(3):437–444
Ullah S, Ahmad A, Wang A, Raza M, Jan AU, Tahir K, Rahman AU, Qipeng Y (2017) Biofabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549). J Photochem Photobiol B 173:368–375. https://doi.org/10.1016/j.jphotobiol.2017.06.018
Banso A, Adeyama SO (2007) Evaluation of antibacterial properties of tannins isolated from Dichrostachys cinerea. Afr J Biotech 6(15):1785–1787
Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464
Tsuchiya H, Sato M, Miuazaki T, Fujiwara S, Tanigaki S (1996) Comparative study on the antibacterial activity of phytochemical flavonones against methicillin resisitant Staphylococcus aureus. J Ethnopharmacol 50:27–34
Bijase G, Majinda RR, Gashe BA, Wanjala CC (2002) Antimicrobial flavonoids from Bolusanthus speciosus. Planta Med 68(7):615–620
Shimada T (2006) Salivary proteins as a defense against dietary tannins. J Chem Ecol 32(6):1149–1163
Sarkar SD, Muniruzzaman S, Khan SI (1991) Antimicrobial activity of Piper Chaba Hunter (Chui). Bangladesh J Bot 20:179–182
Adekunle A, Ikumapayi AM (2006) Antifungal property and phytochemical screening of the crude extracts of Funtumia elastica and Mallotus oppositifolius. West Indian Med J 55(4):223
Jayapriya M, Premkumar K, Arulmozhi M, Karthikeyan K (2020) One-step biological synthesis of caulifower-like Ag/MgO nanocomposite with antibacterial, anticancer, and catalytic activity towards anthropogenic pollutants. Res Chem Intermed 46:1771–1788. https://doi.org/10.1007/s11164-019-04062-1
Umaralikhan L, Jafar MJ (2018) Green synthesis of MgO nanoparticles and it antibacterial activity. Iran J Sci Technol A 42:477–485
Patil UH, Gaikwad DK (2011) Phytochemical screening and microbicidal activity of stem bark of Pterocarpus marsupium. Int J Pharma Sci Res 2(1):36–40
Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT (1988) Surface chemistry of organophosphorus compounds. J Phys Chem 92(22):6182–6188
Doss A, Muhamed MH, Dhanabalan R (2009) Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Indian J Sci Tech 2(2):41–43
Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M (2012) Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanoparticle Res 14:1063. https://doi.org/10.1007/s11051-012-1063-6
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as Bactericidal agents. Langmuir 18(17):6679–6686. https://doi.org/10.1021/la0202374
Sundrarajan M, Suresh J, Gandhi RR (2012) A comparative study on antibacterial properties of Mgo nanoparticles prepared under different calcination temperature. Dig J Nanomater Biostruct 7:983–989
Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS (2015) Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Curr Pharm Biotechnol 16(10):853–870. https://doi.org/10.2174/1389201016666150727120618
Narendar K, Nayak MN, Jamadar MG, Patil AM, Anand S (2016) Comparison of the effect of Pterocarpus marsupium with Pioglitazone in dexamethasone-induced insulin resistance. Asian J Pharm Clin Res 9(2):211–214
Jahromi MF, Ray AB, Chansouria JP (1993) Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium. J Nat Prod 56(7):989–994
Halagappa K, Girish HN, Srinivasan BP (2010) The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-α in type 2 diabetic rats. Indian J Pharmacol 42(6):392–396
Rahman MS, Mujahid MD, Siddiqui MA, Rahman MS, Arif M, Eram S, Khan A, Azeemuddin MD (2018) Ethnobotanical uses, phytochemistry and pharmacological activities of Pterocarpus marsupium: a review. Pharmacog J 10(6):s1–s8. https://doi.org/10.5530/pj.2018.6s.1
Kesmati M, Najafzadeh H (2013) Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci 17(20):2706–2710