Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines

Nasser Abdulatif Al‐Shabib1, Fohad Mabood Husain1, Faizan Abul Qais2, Naushad Ahmad3, Altaf Khan4, Abdullah A. Alyousef5, Mohammed Arshad5, Saba Noor6, Javed Masood Khan1, Pravej Alam7, Thamer Albalawi7, Syed Ali Shahzad1
1Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
2Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
3Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
4Department of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
6National Institute of Cancer Prevention and Research, Noida, India
7Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahamed, 2017, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells., Sci. Rep., 7, 10.1038/s41598-017-17559-9

Al-Ajmi, 2018, Green synthesis of zinc oxide nanoparticles using alstonia macrophylla leaf extract and their in-vitro anticancer activity., Sci. Adv. Mater., 10, 349, 10.1166/sam.2018.2983

Ali, 2015, Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on Clinical Isolates., PLoS One, 10, 10.1371/journal.pone.0131178

Al-Shabib, 2016, Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm., Sci. Rep., 6, 10.1038/srep36761

Al-Shabib, , Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria., Front. Microbiol., 9, 10.3389/fmicb.2018.02567

Al-Shabib, , Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus Leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies., J. Nanomater., 2018, 1, 10.1155/2018/8612158

Amlouk, 2006, Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix., J. Phys. Chem. Solids, 67, 1464, 10.1016/j.jpcs.2006.01.116

Balcázar, 2015, The role of biofilms as environmental reservoirs of antibiotic resistance., Front. Microbiol., 6, 10.3389/fmicb.2015.01216

Bao, 2012, Environment-friendly biomimetic synthesis of TiO 2 nanomaterials for photocatalytic application., Nanotechnology, 23, 10.1088/0957-4484/23/20/205601

Baptista, 2018, Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”., Front. Microbiol., 9, 10.3389/fmicb.2018.01441

Costerton, 2005, Biofilm in implant infections: its production and regulation., Int. J. Artificial Organs, 28, 1062, 10.1177/039139880502801103

Costerton, 1999, Bacterial biofilms: a common cause of persistent infection., Science, 284, 1318, 10.1126/science.284.5418.1318

Dar, 2015, Pharmacologic overview of Withania somnifera, the Indian Ginseng., Cell. Mol. Life Sci., 72, 4445, 10.1007/s00018-015-2012-1

Das, 2002, Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides., J. Mol. Catal. A Chem., 189, 271, 10.1016/S1381-1169(02)00363-1

Eisa, 2019, Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties., J. Clean. Prod., 241, 10.1016/j.jclepro.2019.118398

Farshori, 2014, Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2)., Asian Pacific J. Cancer Prev., 15, 6633, 10.7314/APJCP.2014.15.16.6633

Flemming, 2007, The EPS matrix: the “House of Biofilm Cells.”., J. Bacteriol., 189, 7945, 10.1128/JB.00858-07

Galié, 2018, Biofilms in the food industry: health aspects and control methods., Front. Microbiol., 9, 10.3389/fmicb.2018.00898

Gao, 2015, Microbiota disbiosis is associated with colorectal cancer., Front. Microbiol., 6, 10.3389/fmicb.2015.00020

Hasan, 2019, Eco-friendly green synthesis of dextrin based poly (methyl methacrylate) grafted silver nanocomposites and their antibacterial and antibiofilm efficacy against multi-drug resistance pathogens., J. Clean. Prod., 230, 1148, 10.1016/j.jclepro.2019.05.157

Jayaseelan, 2013, Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 107, 82, 10.1016/j.saa.2012.12.083

Jin, 2008, Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells., Chem. Res. Toxicol., 21, 1871, 10.1021/tx800179f

Johnson, 2015, Metabolism links bacterial biofilms and colon carcinogenesis., Cell Metab., 21, 891, 10.1016/j.cmet.2015.04.011

Johnson, 2008, Microcolony and biofilm formation as a survival strategy for bacteria., J. Theor. Biol., 251, 24, 10.1016/j.jtbi.2007.10.039

Kang, 2009, Cause of slow phase transformation of TiO2 nanorods., J. Phys. Chem. C, 113, 19753, 10.1021/jp9086442

Kashale, 2016, Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application., Compos. Part B Eng., 99, 297, 10.1016/j.compositesb.2016.06.015

Khan, 2016, Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis., J. Biol. Inorg. Chem., 21, 295, 10.1007/s00775-016-1339-x

Khater, 2020, Study to elucidate effect of titanium dioxide nanoparticles on bacterial membrane potential and membrane permeability., Mater. Res. Express, 7, 10.1088/2053-1591/ab731a

Kirthi, 2011, Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis., Mater. Lett., 65, 2745, 10.1016/j.matlet.2011.05.077

Kulshrestha, 2017, Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms., Microb. Pathog., 103, 167, 10.1016/j.micpath.2016.12.022

Li, 2005, Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles., J. Solid State Chem., 178, 1395, 10.1016/j.jssc.2004.12.034

Madadi, 2016, Aqueous extract of Acanthophyllum Laxiusculum roots as a renewable resource for green synthesis of nano-sized titanium dioxide using the sol-gel method P A P E R I N F O., Adv. Ceram. Prog., 2, 26

Marchiol, 2014, In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism., Nanoscale Res. Lett., 9, 10.1186/1556-276X-9-101

Marimuthu, 2013, Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa., Asian Pac. J. Trop. Med., 6, 682, 10.1016/S1995-7645(13)60118-2

Mirzaei, 2020, Bacterial biofilm in colorectal cancer: what is the real mechanism of action?, Microb. Pathog., 142, 10.1016/j.micpath.2020.104052

Murugan, 2016, Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7)., Parasitol. Res., 115, 1085, 10.1007/s00436-015-4838-8

Nadeem, 2018, The current trends in the green syntheses of titanium oxide nanoparticles and their applications., Green Chem. Lett. Rev., 11, 492, 10.1080/17518253.2018.1538118430

Niraimathi, 2013, Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities., Colloids Surfaces B Biointerfaces, 102, 288, 10.1016/j.colsurfb.2012.08.041

Oves, 2019, Antibacterial silver nanomaterial synthesis from mesoflavibacter zeaxanthinifaciens and targeting biofilm formation., Front. Pharmacol., 10, 10.3389/fphar.2019.00801

Patra, 2015, Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential., Int. J. Nanomedicine, 10, 7253, 10.2147/IJN.S95483

Qais, 2018, Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach., IET Nanobiotechnol., 12, 325, 10.1016/j.actbio.2005.02.008

Qais, 2019, Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens., Bioinorg. Chem. Appl., 2019, 10.1155/2019/4649506

Qayyum, 2017, Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles., PLoS One, 12, 10.1371/journal.pone.0181363

Rajakumar, 2015, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites., Parasitol. Res., 114, 571, 10.1007/s00436-014-4219-8

Rajkumari, 2019, Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1., J. Photochem. Photobiol. B Biol., 201, 10.1016/j.jphotobiol.2019.111667

Ravichandran, 2016, Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity., Mater. Lett., 180, 264, 10.1016/j.matlet.2016.05.172

Rizwana, 2012, Antibacterial potential of Withania somnifera L. against human pathogenic bacteria., African J. Microbiol. Res., 6, 4810, 10.5897/ajmr12.660

Rizzato, 2019, Potential role of biofilm formation in the development of digestive tract cancer with special reference to helicobacter pylori infection., Front. Microbiol., 10, 10.3389/fmicb.2019.00846

Roopan, 2012, Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 98, 86, 10.1016/j.saa.2012.08.055

Sankar, 2014, Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats., J. Mater. Sci. Mater. Med., 25, 1701, 10.1007/s10856-014-5193-5

Sha, 2011, Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat., Compos. Part B Eng., 42, 2136, 10.1016/j.compositesb.2011.05.009

Siddiqi, 2018, A review on biosynthesis of silver nanoparticles and their biocidal properties., J. Nanobiotechnol., 16, 10.1186/s12951-018-0334-5

Sunkar, 2014, Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus., J. Nanoparticle Res., 16, 1, 10.1007/s11051-014-2681-y

Velayutham, 2012, Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis., Parasitol. Res., 111, 2329, 10.1007/s00436-011-2676-x

Yan, 2004, Preparation, characterization and photocatalytic activity of TiO 2 formed from a mesoporous precursor., J. Porous Mater., 11, 131, 10.1023/B:JOPO.0000038008.86521.9a

Yodyingyong, 2011, Physicochemical properties of nanoparticles titania from alcohol burner calcination., Bull. Chem. Soc. Ethiop., 25, 263, 10.4314/bcse.v25i2.65901

Yu, 2010, One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets., CrystEngComm, 12, 872, 10.1039/b914385h

Zhang, 2003, Photoluminescence of ZnO films excited with light of different wavelength., Appl. Surf. Sci., 207, 20, 10.1016/S0169-4332(02)01225-4