Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahamed, 2017, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells., Sci. Rep., 7, 10.1038/s41598-017-17559-9
Al-Ajmi, 2018, Green synthesis of zinc oxide nanoparticles using alstonia macrophylla leaf extract and their in-vitro anticancer activity., Sci. Adv. Mater., 10, 349, 10.1166/sam.2018.2983
Ali, 2015, Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on Clinical Isolates., PLoS One, 10, 10.1371/journal.pone.0131178
Al-Shabib, 2016, Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm., Sci. Rep., 6, 10.1038/srep36761
Al-Shabib, , Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria., Front. Microbiol., 9, 10.3389/fmicb.2018.02567
Al-Shabib, , Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus Leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies., J. Nanomater., 2018, 1, 10.1155/2018/8612158
Amlouk, 2006, Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix., J. Phys. Chem. Solids, 67, 1464, 10.1016/j.jpcs.2006.01.116
Balcázar, 2015, The role of biofilms as environmental reservoirs of antibiotic resistance., Front. Microbiol., 6, 10.3389/fmicb.2015.01216
Bao, 2012, Environment-friendly biomimetic synthesis of TiO 2 nanomaterials for photocatalytic application., Nanotechnology, 23, 10.1088/0957-4484/23/20/205601
Baptista, 2018, Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”., Front. Microbiol., 9, 10.3389/fmicb.2018.01441
Costerton, 2005, Biofilm in implant infections: its production and regulation., Int. J. Artificial Organs, 28, 1062, 10.1177/039139880502801103
Costerton, 1999, Bacterial biofilms: a common cause of persistent infection., Science, 284, 1318, 10.1126/science.284.5418.1318
Dar, 2015, Pharmacologic overview of Withania somnifera, the Indian Ginseng., Cell. Mol. Life Sci., 72, 4445, 10.1007/s00018-015-2012-1
Das, 2002, Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides., J. Mol. Catal. A Chem., 189, 271, 10.1016/S1381-1169(02)00363-1
Eisa, 2019, Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties., J. Clean. Prod., 241, 10.1016/j.jclepro.2019.118398
Farshori, 2014, Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2)., Asian Pacific J. Cancer Prev., 15, 6633, 10.7314/APJCP.2014.15.16.6633
Flemming, 2007, The EPS matrix: the “House of Biofilm Cells.”., J. Bacteriol., 189, 7945, 10.1128/JB.00858-07
Galié, 2018, Biofilms in the food industry: health aspects and control methods., Front. Microbiol., 9, 10.3389/fmicb.2018.00898
Gao, 2015, Microbiota disbiosis is associated with colorectal cancer., Front. Microbiol., 6, 10.3389/fmicb.2015.00020
Hasan, 2019, Eco-friendly green synthesis of dextrin based poly (methyl methacrylate) grafted silver nanocomposites and their antibacterial and antibiofilm efficacy against multi-drug resistance pathogens., J. Clean. Prod., 230, 1148, 10.1016/j.jclepro.2019.05.157
Jayaseelan, 2013, Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 107, 82, 10.1016/j.saa.2012.12.083
Jin, 2008, Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells., Chem. Res. Toxicol., 21, 1871, 10.1021/tx800179f
Johnson, 2015, Metabolism links bacterial biofilms and colon carcinogenesis., Cell Metab., 21, 891, 10.1016/j.cmet.2015.04.011
Johnson, 2008, Microcolony and biofilm formation as a survival strategy for bacteria., J. Theor. Biol., 251, 24, 10.1016/j.jtbi.2007.10.039
Kang, 2009, Cause of slow phase transformation of TiO2 nanorods., J. Phys. Chem. C, 113, 19753, 10.1021/jp9086442
Kashale, 2016, Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application., Compos. Part B Eng., 99, 297, 10.1016/j.compositesb.2016.06.015
Khan, 2016, Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis., J. Biol. Inorg. Chem., 21, 295, 10.1007/s00775-016-1339-x
Khater, 2020, Study to elucidate effect of titanium dioxide nanoparticles on bacterial membrane potential and membrane permeability., Mater. Res. Express, 7, 10.1088/2053-1591/ab731a
Kirthi, 2011, Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis., Mater. Lett., 65, 2745, 10.1016/j.matlet.2011.05.077
Kulshrestha, 2017, Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms., Microb. Pathog., 103, 167, 10.1016/j.micpath.2016.12.022
Li, 2005, Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles., J. Solid State Chem., 178, 1395, 10.1016/j.jssc.2004.12.034
Madadi, 2016, Aqueous extract of Acanthophyllum Laxiusculum roots as a renewable resource for green synthesis of nano-sized titanium dioxide using the sol-gel method P A P E R I N F O., Adv. Ceram. Prog., 2, 26
Marchiol, 2014, In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism., Nanoscale Res. Lett., 9, 10.1186/1556-276X-9-101
Marimuthu, 2013, Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa., Asian Pac. J. Trop. Med., 6, 682, 10.1016/S1995-7645(13)60118-2
Mirzaei, 2020, Bacterial biofilm in colorectal cancer: what is the real mechanism of action?, Microb. Pathog., 142, 10.1016/j.micpath.2020.104052
Murugan, 2016, Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7)., Parasitol. Res., 115, 1085, 10.1007/s00436-015-4838-8
Nadeem, 2018, The current trends in the green syntheses of titanium oxide nanoparticles and their applications., Green Chem. Lett. Rev., 11, 492, 10.1080/17518253.2018.1538118430
Niraimathi, 2013, Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities., Colloids Surfaces B Biointerfaces, 102, 288, 10.1016/j.colsurfb.2012.08.041
Oves, 2019, Antibacterial silver nanomaterial synthesis from mesoflavibacter zeaxanthinifaciens and targeting biofilm formation., Front. Pharmacol., 10, 10.3389/fphar.2019.00801
Patra, 2015, Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential., Int. J. Nanomedicine, 10, 7253, 10.2147/IJN.S95483
Qais, 2018, Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach., IET Nanobiotechnol., 12, 325, 10.1016/j.actbio.2005.02.008
Qais, 2019, Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens., Bioinorg. Chem. Appl., 2019, 10.1155/2019/4649506
Qayyum, 2017, Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles., PLoS One, 12, 10.1371/journal.pone.0181363
Rajakumar, 2015, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites., Parasitol. Res., 114, 571, 10.1007/s00436-014-4219-8
Rajkumari, 2019, Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1., J. Photochem. Photobiol. B Biol., 201, 10.1016/j.jphotobiol.2019.111667
Ravichandran, 2016, Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity., Mater. Lett., 180, 264, 10.1016/j.matlet.2016.05.172
Rizwana, 2012, Antibacterial potential of Withania somnifera L. against human pathogenic bacteria., African J. Microbiol. Res., 6, 4810, 10.5897/ajmr12.660
Rizzato, 2019, Potential role of biofilm formation in the development of digestive tract cancer with special reference to helicobacter pylori infection., Front. Microbiol., 10, 10.3389/fmicb.2019.00846
Roopan, 2012, Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 98, 86, 10.1016/j.saa.2012.08.055
Sankar, 2014, Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats., J. Mater. Sci. Mater. Med., 25, 1701, 10.1007/s10856-014-5193-5
Sha, 2011, Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat., Compos. Part B Eng., 42, 2136, 10.1016/j.compositesb.2011.05.009
Siddiqi, 2018, A review on biosynthesis of silver nanoparticles and their biocidal properties., J. Nanobiotechnol., 16, 10.1186/s12951-018-0334-5
Sunkar, 2014, Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus., J. Nanoparticle Res., 16, 1, 10.1007/s11051-014-2681-y
Velayutham, 2012, Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis., Parasitol. Res., 111, 2329, 10.1007/s00436-011-2676-x
Yan, 2004, Preparation, characterization and photocatalytic activity of TiO 2 formed from a mesoporous precursor., J. Porous Mater., 11, 131, 10.1023/B:JOPO.0000038008.86521.9a
Yodyingyong, 2011, Physicochemical properties of nanoparticles titania from alcohol burner calcination., Bull. Chem. Soc. Ethiop., 25, 263, 10.4314/bcse.v25i2.65901
Yu, 2010, One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets., CrystEngComm, 12, 872, 10.1039/b914385h