Physiology and microbial community structure in soil at extreme water content
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amato M., Ladd J.N.: Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils.Soil Biol.Biochem. 20, 107–114 (1988).
Atlas R.M.: Use of microbial diversity measurements to assess environmental stress, pp. 540–545 in M.J. Klug, C.A. Reddy (Eds):Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington (DC) 1984.
Bååth E.: Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization centrifugation.Soil Biol.Biochem. 24, 1157–1165 (1992).
Bossio D.A., Scow K.M.: Impact of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization pattern.Microb.Ecol. 35, 265–278 (1998).
Brown A.D.:Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester (UK) 1990.
Chen Y.S., Chen S.C., Kao C.M., Chen Y.L.: Effects of soil pH, temperature and water content on the growth ofBurkholderia pseudomallei.Folia Microbiol. 48, 253–256 (2003).
Chotte J.L., Ladd J.N., Amato M.: Measurement of biomass C, N and14C of a soil at different water content using a fumigation extraction assay.Soil Biol.Biochem. 30, 1221–1224 (1998).
Daniel M., Choi J.H., Kim J.H., Lebeault J.M.: Effect of nutrient deficiency on accumulation and relative molecular-weight of poly-β-hydroxybutyric acid by methylotrophic bacterium,Pseudomonas 135.Appl.Microbiol.Biotechnol. 37, 702–706 (1992).
Dawes E.A., Senior P.J.: The role and regulation of energy reserve polymers in microorganisms.Adv.Microb.Physiol. 10, 135–266 (1973).
Eliiottová D., Tříska J., Petersen S.O., Šantrůčková H.: Analysis of poly-β-hydroxybutyrate in environmental samples by GC-MS/MS.Fresenius J.Anal.Chem. 367, 157–164 (2000).
Federle T.W.: Microbial distribution in soil — new techniques, pp. 493–498 in F. Megusar, M. Gantar (Eds):Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana 1986.
Frostegård Å., Tunlid A., Bååth E.: Phospholipid fatty acids composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Appl.Environ.Microbiol. 59, 3605–3617 (1993).
Grant R.F., Rochette P.: Soil microbial respiration at different water potentials and temperatures: theory and mathematical mdoeling.Soil Sci.Soc.Am.J. 58, 1681–1690 (1994).
Grundmann G.L., Renault P., Rosso L., Bardin R.: Differential effects of soil water content and temperature on nitrification and aeration.Soil Sci.Soc.Am.J. 59, 1342–1349 (1995).
Guckert J.B., Hood M.A., White D.C.: Phospholipid ester-linked fatty acid profile changes during nutrient deprivation ofVibrio cholerae: increases intrans/cis ratio and proportions of cyclopropyl fatty acid.Appl.Environ.Microbiol. 52, 794–801 (1986).
Guckert J.B., Ringelberg D.B., White D.C., Hanson R.S., Bratina B.J.: Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria.J.Gen.Microbiol. 137, 2631–2641 (1991).
Harris R.F.: Effects of water potential on microbial growth and activity, pp. 23–96 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.
Howard D.M., Howard P.J.A.: Relationships between CO2 evolution, moisture content and temperature for a range of soil types.Soil Biol.Biochem. 25, 1537–1546 (1993).
James B.W., Mauchline W.S., Dennis P.J., Keevil C.W., Wait R.: Poly-3-hydroxybutyrate inLegionella pneumophila, an energy source for survival in low-nutrient environments.Appl.Environ.Microbiol. 62, 822–827 (1999).
Jianping Su, Yanqing Wu, Xiaojun Ma, Gaosen Zhang, Huyuan Feng, Yinghua Zhang: Soil microbial counts and identification of culturable bacteria in an extreme by arid zone.Folia Microbiol. 49, 423–430 (2004).
Kieft T.L., Riegelberg D.B., White D.C.: Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in porous medium.Appl.Environ.Microbiol. 60, 3292–3299 (1994).
Kim Y.B., Lenz R.W.: Polyesters from microorganisms, pp. 51–79 in T. Scheper (Ed.):Advances in Biochemical Engineering/Biotechnology, Vol. 71. Springer-Verlag, Berlin-Heidelberg 2001.
Kroppenstedt R.M.: Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173–199 in M. Goodfellow, D.E. Minnikin (Eds):Chemical Methods in Bacterial Systematics. Academic Press, London 1985.
Lindahl V., Frostegård M., Bakken L., Bååth E.: Phospholipid fatty acid composition of size fractionated indigenous soil bacteria.Soil Biol.Biochem. 29, 1565–1569 (1997).
Linn D.M., Doran J.W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils.Soil Sci.Soc.Am.J. 48, 1267–1272 (1984).
Loferer-Krössbacher M., Klima J., Psenner R.: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis.Appl.Environ.Microbiol. 64, 688–694 (1998).
Lundquist E.J., Scow K.M., Jackson L.E., Uesugi S.L., Johnson C.R.: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle.Soil Biol.Biochem. 31, 1661–1675 (1999).
Martens D.A., Frankenberger W.T.: Saccharide composition of extracellular polymers produced by soil microorganisms.Soil Biol.Biochem. 23, 731–736 (1991).
Mazumder R., Pinkard H.C., Alban P.S., Phelps T.J., Benoit R.E.: Low-substrate regulated microaerophilic behavior as a stress response of aquatic and soil bacteria.Curr.Microbiol. 41, 79–83 (2000).
Navarrete A., Peacock A., Macnaughton S.J., Urmeneta J., Mas-Castalla J., White D.C., Guerrero R.: Physiological status and community composition of microbial mats of the Ebro delta, Spain, by signature lipid biomarkers.Microb.Ecol. 39, 92–99 (2000).
Nazih N., Finlay-Moore O., Hartel P.G., Furhmann J.J.: Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential.Soil Biol.Biochem. 33, 693–696 (2001).
Nichols P.D., White D.C.: Accumulation of poly-β-hydroxybutyrate in a methane-enriched, halogenated hydrocarbon-degrading soil column: implications for microbial community structure and nutritional status.Hydrobiologia 176/177, 369–377 (1989).
Okabe A., Oike H., Toyota K., Kimura M.: Comparison of phospholipid fatty acid composition in floodwater and plow layer soil during the rice cultivation period in a Japanese paddy field.Soil Sci.Plant Nutr. 46, 893–904 (2000).
Papendick R.I., Campbell G.S.: Theory and measurement of water potential, pp. 1–22 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.
Ratledge C., Wilkinson S.G.:Microbial Lipids. Academic Press, London 1988.
Robertson E.B., Firestone M.K.: Relationship between desiccation and exopolysacharide production in a soilPseudomonas sp.Appl.Environ.Microbiol. 58, 1284–1291 (1992).
Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom J.E., Braddock J.F.: Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga.Soil Biol.Biochem. 31, 831–838 (1999).
Skopp J., Jawson M.D., Doran J.W.: Steady-state aerobic microbial activity as a function of soil water content.Soil Sci.Soc.Am.J. 54, 1619–1625 (1990).
Sundh I., Nielsson M., Borgå P.: Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles.Appl.Environ.Microbiol. 63, 1476–1482 (1997).
Tempest D.W., Neijssel O.M.: Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments.Adv.Microb.Ecol. 2, 105–153 (1978).
Third K.A., Newland M., Cord-Ruwisch R.: The effect of dissolved oxygen on PHB accumulation in activated sludge cultures.Biotechnol.Bioeng. 82, 238–250 (2003).
Thomas T.D., Batt R.D.: Degradation of cell constituents by starvedStreptoccoccus lactis in relation to survival.J.Gen.Microbiol. 58, 347–362 (1969).
Uhlířová E., Šantrůčková H.: Growth rate of bacteria is affected by soil texture and extraction procedure.Soil Biol.Biochem. 35, 217–224 (2003).
Van Gestel M., Merckx R., Vlassak K.: Microbial biomass responses to soil drying and rewetting. I. The fate of fast- and slow-growing microorganisms in soils from different climates.Soil Biol.Biochem. 25, 109–123 (1993).
Vance E.D., Brookes P.C., Jenkinson D.S.: An extraction method for measuring soil microbial biomass.Soil Biol.Biochem. 19, 703–707 (1987).
White D.C., Ringelberg D.B.: Utility of the signature lipid biomarker analysis in determining thein situ viable biomass, community structure and nutritional/physiological status of deep subsurface microbiota, pp. 119–136 in P.S. Army, D.L. Haldeman (Eds):The Microbiology of the Terrestrial Deep Subsurface. Lewis Publishers, Boca Raton (USA) 1997.
Zelles L.: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review.Biol.Fertil.Soils 29, 111–129 (1999).