Physiology and microbial community structure in soil at extreme water content

Eva Uhlířová1, Dana Elhottová2, Jan F. Triska3, Hana Šantrůčková1
1Institute of Soil Biology, Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czechia
2Institute of Soil Biology, Academy of Sciences of the Czech Republic, České Budějovice, Czechia
3Institute of Landscape Ecology, Academy of Sciences of the Czech Republic, České Budějovice, Czechia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amato M., Ladd J.N.: Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils.Soil Biol.Biochem. 20, 107–114 (1988).

Atlas R.M.: Use of microbial diversity measurements to assess environmental stress, pp. 540–545 in M.J. Klug, C.A. Reddy (Eds):Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington (DC) 1984.

Bååth E.: Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization centrifugation.Soil Biol.Biochem. 24, 1157–1165 (1992).

Bossio D.A., Scow K.M.: Impact of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization pattern.Microb.Ecol. 35, 265–278 (1998).

Brown A.D.:Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester (UK) 1990.

Chen Y.S., Chen S.C., Kao C.M., Chen Y.L.: Effects of soil pH, temperature and water content on the growth ofBurkholderia pseudomallei.Folia Microbiol. 48, 253–256 (2003).

Chotte J.L., Ladd J.N., Amato M.: Measurement of biomass C, N and14C of a soil at different water content using a fumigation extraction assay.Soil Biol.Biochem. 30, 1221–1224 (1998).

Daniel M., Choi J.H., Kim J.H., Lebeault J.M.: Effect of nutrient deficiency on accumulation and relative molecular-weight of poly-β-hydroxybutyric acid by methylotrophic bacterium,Pseudomonas 135.Appl.Microbiol.Biotechnol. 37, 702–706 (1992).

Dawes E.A., Senior P.J.: The role and regulation of energy reserve polymers in microorganisms.Adv.Microb.Physiol. 10, 135–266 (1973).

Eliiottová D., Tříska J., Petersen S.O., Šantrůčková H.: Analysis of poly-β-hydroxybutyrate in environmental samples by GC-MS/MS.Fresenius J.Anal.Chem. 367, 157–164 (2000).

Federle T.W.: Microbial distribution in soil — new techniques, pp. 493–498 in F. Megusar, M. Gantar (Eds):Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana 1986.

Frostegård Å., Tunlid A., Bååth E.: Phospholipid fatty acids composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Appl.Environ.Microbiol. 59, 3605–3617 (1993).

Grant R.F., Rochette P.: Soil microbial respiration at different water potentials and temperatures: theory and mathematical mdoeling.Soil Sci.Soc.Am.J. 58, 1681–1690 (1994).

Griffin D.M.: Water and microbial stress.Adv.Microb.Ecol. 5, 91–136 (1981).

Grundmann G.L., Renault P., Rosso L., Bardin R.: Differential effects of soil water content and temperature on nitrification and aeration.Soil Sci.Soc.Am.J. 59, 1342–1349 (1995).

Guckert J.B., Hood M.A., White D.C.: Phospholipid ester-linked fatty acid profile changes during nutrient deprivation ofVibrio cholerae: increases intrans/cis ratio and proportions of cyclopropyl fatty acid.Appl.Environ.Microbiol. 52, 794–801 (1986).

Guckert J.B., Ringelberg D.B., White D.C., Hanson R.S., Bratina B.J.: Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria.J.Gen.Microbiol. 137, 2631–2641 (1991).

Harris R.F.: Effects of water potential on microbial growth and activity, pp. 23–96 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.

Howard D.M., Howard P.J.A.: Relationships between CO2 evolution, moisture content and temperature for a range of soil types.Soil Biol.Biochem. 25, 1537–1546 (1993).

James B.W., Mauchline W.S., Dennis P.J., Keevil C.W., Wait R.: Poly-3-hydroxybutyrate inLegionella pneumophila, an energy source for survival in low-nutrient environments.Appl.Environ.Microbiol. 62, 822–827 (1999).

Jianping Su, Yanqing Wu, Xiaojun Ma, Gaosen Zhang, Huyuan Feng, Yinghua Zhang: Soil microbial counts and identification of culturable bacteria in an extreme by arid zone.Folia Microbiol. 49, 423–430 (2004).

Kieft T.L., Riegelberg D.B., White D.C.: Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in porous medium.Appl.Environ.Microbiol. 60, 3292–3299 (1994).

Kim Y.B., Lenz R.W.: Polyesters from microorganisms, pp. 51–79 in T. Scheper (Ed.):Advances in Biochemical Engineering/Biotechnology, Vol. 71. Springer-Verlag, Berlin-Heidelberg 2001.

Kroppenstedt R.M.: Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173–199 in M. Goodfellow, D.E. Minnikin (Eds):Chemical Methods in Bacterial Systematics. Academic Press, London 1985.

Lindahl V., Frostegård M., Bakken L., Bååth E.: Phospholipid fatty acid composition of size fractionated indigenous soil bacteria.Soil Biol.Biochem. 29, 1565–1569 (1997).

Linn D.M., Doran J.W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils.Soil Sci.Soc.Am.J. 48, 1267–1272 (1984).

Loferer-Krössbacher M., Klima J., Psenner R.: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis.Appl.Environ.Microbiol. 64, 688–694 (1998).

Lundquist E.J., Scow K.M., Jackson L.E., Uesugi S.L., Johnson C.R.: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle.Soil Biol.Biochem. 31, 1661–1675 (1999).

Martens D.A., Frankenberger W.T.: Saccharide composition of extracellular polymers produced by soil microorganisms.Soil Biol.Biochem. 23, 731–736 (1991).

Mazumder R., Pinkard H.C., Alban P.S., Phelps T.J., Benoit R.E.: Low-substrate regulated microaerophilic behavior as a stress response of aquatic and soil bacteria.Curr.Microbiol. 41, 79–83 (2000).

Navarrete A., Peacock A., Macnaughton S.J., Urmeneta J., Mas-Castalla J., White D.C., Guerrero R.: Physiological status and community composition of microbial mats of the Ebro delta, Spain, by signature lipid biomarkers.Microb.Ecol. 39, 92–99 (2000).

Nazih N., Finlay-Moore O., Hartel P.G., Furhmann J.J.: Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential.Soil Biol.Biochem. 33, 693–696 (2001).

Nichols P.D., White D.C.: Accumulation of poly-β-hydroxybutyrate in a methane-enriched, halogenated hydrocarbon-degrading soil column: implications for microbial community structure and nutritional status.Hydrobiologia 176/177, 369–377 (1989).

Okabe A., Oike H., Toyota K., Kimura M.: Comparison of phospholipid fatty acid composition in floodwater and plow layer soil during the rice cultivation period in a Japanese paddy field.Soil Sci.Plant Nutr. 46, 893–904 (2000).

Papendick R.I., Campbell G.S.: Theory and measurement of water potential, pp. 1–22 in L.F. Parr, W.R. Gardner, L.F. Elliot (Eds):Water Potential Relations in Soil Microbiology.Special Publication no.9. Soil Science Society of America, Madison (USA) 1981.

Potts M.: Desiccation tolerance of prokaryotes.Microbiol.Rev. 58, 755–805 (1994).

Ratledge C., Wilkinson S.G.:Microbial Lipids. Academic Press, London 1988.

Robertson E.B., Firestone M.K.: Relationship between desiccation and exopolysacharide production in a soilPseudomonas sp.Appl.Environ.Microbiol. 58, 1284–1291 (1992).

Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom J.E., Braddock J.F.: Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga.Soil Biol.Biochem. 31, 831–838 (1999).

Skopp J., Jawson M.D., Doran J.W.: Steady-state aerobic microbial activity as a function of soil water content.Soil Sci.Soc.Am.J. 54, 1619–1625 (1990).

Sundh I., Nielsson M., Borgå P.: Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles.Appl.Environ.Microbiol. 63, 1476–1482 (1997).

Tempest D.W., Neijssel O.M.: Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments.Adv.Microb.Ecol. 2, 105–153 (1978).

Third K.A., Newland M., Cord-Ruwisch R.: The effect of dissolved oxygen on PHB accumulation in activated sludge cultures.Biotechnol.Bioeng. 82, 238–250 (2003).

Thomas T.D., Batt R.D.: Degradation of cell constituents by starvedStreptoccoccus lactis in relation to survival.J.Gen.Microbiol. 58, 347–362 (1969).

Uhlířová E., Šantrůčková H.: Growth rate of bacteria is affected by soil texture and extraction procedure.Soil Biol.Biochem. 35, 217–224 (2003).

Van Gestel M., Merckx R., Vlassak K.: Microbial biomass responses to soil drying and rewetting. I. The fate of fast- and slow-growing microorganisms in soils from different climates.Soil Biol.Biochem. 25, 109–123 (1993).

Vance E.D., Brookes P.C., Jenkinson D.S.: An extraction method for measuring soil microbial biomass.Soil Biol.Biochem. 19, 703–707 (1987).

White D.C., Ringelberg D.B.: Utility of the signature lipid biomarker analysis in determining thein situ viable biomass, community structure and nutritional/physiological status of deep subsurface microbiota, pp. 119–136 in P.S. Army, D.L. Haldeman (Eds):The Microbiology of the Terrestrial Deep Subsurface. Lewis Publishers, Boca Raton (USA) 1997.

Zelles L.: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review.Biol.Fertil.Soils 29, 111–129 (1999).

Zelles L., Bay Q.Y., Ma R.X., Rackwitz R., Winter K., Beese F.: Microbial biomass, metabolic activity and nutritional status determined from fatty-acid patterns and poly-β-hydroxybutyrate in agriculturally-managed soils.Soil Biol.Biochem. 26, 439–446 (1994).