Physiologically based pharmacokinetic modeling as a tool for drug development
Tóm tắt
Since the pioneering work of Haggard and Teorell in the first half of the 20th century, and of Bischoff and Dedrick in the late 1960s, physiologically based pharmacokinetic (PBPK) modeling has gone through cycles of general acceptance, and of healthy skepticism. Recently, however, the trend in the pharmaceuticals industry has been away from PBPK models. This is understandable when one considers the time and effort necessary to develop, test, and implement a typical PBPK model, and the fact that in the present-day environment for drug development, efficacy and safety must be demonstrated and drugs brought to market more rapidly. Although there are many modeling tools available to the pharmacokineticist today, many of which are preferable to PBPK modeling in most circumstances, there are several situations in which PBPK modeling provides distinct benefits that outweigh the drawbacks of increased time and effort for implementation. In this Commentary, we draw on our experience with this modeling technique in an industry setting to provide guidelines on when PBPK modeling techniques could be applied in an industrial setting to satisfy the needs of regulatory customers. We hope these guidelines will assist researchers in deciding when to apply PBPK modeling techniques. It is our contention that PBPK modeling should be viewed as one of many modeling tools for drug development.
Tài liệu tham khảo
A. S. Hussain, R. D. Johnson, N. N. Vachharajani, and W. A. Ritschel. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data.Pharm. Res. 10:466–469 (1993).
P. Veng-Pedersen and N. B. Modi. Neural networks in pharmacodynamic modeling. Is current modeling practice of complex kinetic systems at a dead end?J. Pharmacokin. Biopharm. 20:397–412 (1992).
A. S. Hussain, X. Yu, and R. D. Johnson. Application of neural computing in pharmaceutical product development.Pharm. Res. 8:1248–1252 (1991).
R. S. Markin, W. J. Murray, and H. Boxenbaum. Quantitative structure-activity study on human pharmacokinetic parameters of benzodiazepines using the graph theoretical approach.Pharm. Res. 5:201–208 (1988).
E. Gifford, M. Johnson, and C.-C. Tsai. A graph-theoretic approach to modeling metabolic pathways.J. Comp. Aid. Mol. Dis. 5:(1991).
P. O. Droz, M. M. Wu, W. G. Cumberland, and M. Berode. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model.Br. J. Ind. Med. 46:447–460 (1989).
T. M. Ludden, S. R. B. Allerheiligen, and R. F. Burk. Application of population analysis to physiological pharmacokinetics.J. Pharmacokin. Biopharm. 19:101S-113S (1991).
D. R. Mattison and F. R. Jelovsek. Pharmacokinetics and expert systems as aids for risk assessment in reproductive toxicology.Environ. Health Perspect. 76:107–119 (1987).
L. P. Balant, H. Roseboom, and U. M. Gundert-Remy. Pharmacokinetic criteria for drug research and development. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 1–137.
R. M. J. Ings. Interspecies scaling and comparisons in drug development and toxicokinetics.Xenobiotica 20:1201–1231 (1990).
W. R. Chappel and J. Mordenti. Extrapolation of toxicological and pharmacological data from animals to humans. In B. Testa (ed.),Advances in Drug Research, Academic Press, New York, 1991, pp. 1–116.
W. A. Colburn. Physiologic pharmacokinetic modeling.J. Clin. Pharmacol. 28:673–677 (1988).
W. A. Ritschel and P. S. Banaerjee. Physiological pharmacokinetic models: Principles, applications, limitations, and outlook.Meth. Find. Exp. Clin. Pharmacol. 8:603–614 (1986).
L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).
R. W. D'Souza and H. Boxenbaum. Physiological pharmacokinetic models: Some aspects of theory, practice, and potential.Toxicol. Ind. Health. 4:151–171 (1988).
K. B. Bischoff. Physiological pharmacokinetics.Bull. Math. Biol. 48:309–322 (1986).
M. Rowland. Physiological pharmacokinetic models and interanimal species scaling.Pharmacol. Ther. 29:49–68 (1985).
M. Rowland. Physiologic pharmacokinetic models: Relevance, experience, and future trends.Drug Metab. Rev. 15:55–74 (1984).
A. J. J. Atkinson, T. I. Ruo, and M. C. Frederiksen. Physiological basis of multicompartmental models of drug distribution.Trends Pharmacol. Sci. 12:96–101 (1991).
K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).
R. Kawai, M. Lemaire, J.-L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125.J. Pharmacokin. Biopharm. 22:327–365 (1994).
H. Sato, A Bruelisauer, M. Lemaire, and W. Niederberger. Physiological modeling of nonlinear hepatic first-pass of a novel 5-HT3 antagonist, SDZ ICM 567, in rats and dogs, and extrapolation to human. (in preparation).
M. Gilbaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982.
H. W. Haggard. The absorption, distribution, and elimination of ethyl ether. II. Analysis of the mechanism of the absorption and elimination of such a gas or vapor as ethyl ether.J. Biol. Chem. 59:753–770 (1924).
T. Teorell. Kinetics of the distribution of substances administered to the body.Arch. Int. Pharmacodyn. Ther. 57:205–240 (1937).
W. W. Mapleson. An electric analogue for uptake and exchange of inert gases and other agents.J. Appl. Physiol. 18:197–204 (1963).
R. Bellman, R. Kalaba, and J. A. Jacquez. Some mathematical aspects of chemotherapy.Bull. Math. Biophysics. 22:181–190 (1960).
K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).
K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).
K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).
H. Boxenbaum and R. W. D'Souza. Interspecies pharmacokinetic scaling, biological design, and neoteny. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 139–196.
J. Mordenti. Man versus beast: Pharmacokinetic scaling in mammals.J. Pharm. Sci. 75:1028–1046 (1986).
L. P. Balant and M. Cex-Fabry. Physiological pharmacokinetic modeling.Xenobiotica 20:1241–1257 (1990).
E. Voisin, M. Ruthsatz, J. M. Collins, and P. C. Hoyle. Extrapolation of animal toxicity to humans: Interspecies comparisons in drug development.Reg. Toxicol. Pharmacol. 12:107–116 (1990).
M. E. Andersen, D. Krewski, and J. R. Withey. Physiological pharmacokinetics and cancer risk assessment.Cancer Letters 69:1–14 (1993).
R. B. Conolly and M. E. Andersen. Biologically based pharmacodynamic models: Tools for toxicological research and risk assessment.Ann. Rev. Pharmacol. Toxicol. 31:503–523 (1991).
H.-W. Leung. Use of physiologically based pharmacokinetic models to establish biological exposure indexes.Am. Ind. Hyg. Assoc. J. 53:369–374 (1992).
H.-W. Leung. Development and utilization of physiologically based pharmacokinetic models for toxicological applications.J. Toxicol. Environ. Health 32:247–267 (1991).
K. Krishnan and M. E. Andersen. Physiological modeling and cancer risk assessment.New Trends Pharmacokin. (1991).
D. Krewski, J. R. Whithey, L. F. Ku, and C. C. Travis. Physiologically based pharmacokinetic models: Applications in carcinogenic risk assessment.New Trends Pharmacokin. (1991).
J. N. Blancato. Physiologically-based pharmacokinetic models in risk and exposure assessment.Ann. Ist. Super. Sanita. 27:601–608 (1991).
R. J. Lutz and R. L. Dedrick. Implications of pharmacokinetic modeling in risk assessment analysis.Environ. Health Perspect. 76:97–106 (1987).
A. Boddy, L. Aarons, and K. Petrak. Efficiency of drug targeting: Steady-state considerations using a three-compartment model.Pharm. Res. 6:367–372 (1989).
C. A. Hunt, R. D. MacGregor, and R. A. Siegel. Engineering targetingin vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.Pharm. Res. 3:333–344 (1986).
J. M. Gallo, C. T. Hung, P. K. Gupta, and D. G. Perrier. Physiological pharmacokinetic model of adriamycin delivery via magnetic albumin microspheres in the rat.J. Pharmacokin. Biopharm. 17:305–326 (1989).
F. G. King and R. L. Dedrick. Physiological pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in the mouse.J. Pharmacokin. Biopharm. 20:95–99 (1992).
F. G. King and R. L. Dedrick. Physiologic pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in several species.J. Pharmacokin. Biopharm. 14:131–157 (1986).
S. M. Eaton, P. Wedeking, M. F. Tweedle, and W. C. Eckelman. A multi-organ, axially distributed model of capillary permeability for a magnetic resonance imaging contrast agent.J. Pharm. Sci. 82:531–536 (1993).
D. W. A. Bourne, J. J. Jacobs, A. Awaluddin, D. J. Maddalena, J. G. Wilson, and R. E. Boyd. Physiological modeling of disposition of potential tumor-imaging radiopharmaceuticals in tumor-bearing mice.J. Pharm. Sci. 81:408–412 (1992).
D. C. Maneval, D. Z. D'Argenio, and W. Wolf. A kinetic model for 99mTc-DMSA in the rat.Eur. J. Nucl. Med. 16:29–34 (1990).
Y. Sugiyama, D. C. Kim, H. Sato, S. Yanai, H. Satoh, T. Iga, and M. Hanano. Receptor-mediated disposition of polypeptides: Kinetic analysis of the transport of epidermal growth factor as a model peptide usingin vitro isolated perfused organs andin vivo systems.J. Control. Rel. 13:157–174 (1990).
H. Sato, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of radioiodinated human-β-endorphin in rats. An application of the capillary membrane-limited model.Drug. Metab. Dispos. 15:540–550 (1987).
D. G. Covell, J. Barbet, O. D. Holton, C. D. V. Black, R. J. Parker, and J. N. Winstein. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice.Cancer Res. 46:3969–3978 (1986).
S. M. Somani, S. K. Gupta, A. Khalique, and L. K. Unni. Physiological pharmacokinetic and pharmacodynamic model of physostigmine in the rat.Drug Metab. Disp. 19:655–660 (1991).
J. M. Gearhart, G. W. Jepson, H. J. Clewell, M. E. Andersen, and R. B. Conolly. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.Toxicol. Appl. Pharmacol. 106:295–310 (1990).
P. C. Hiestanel, M. Graeber, V. Hurtenbach, P. Herrmann, S. Caunisuli, B. P. Richardson, M. K. Ebecle, and S. F. Birel. The new cyclosporine derivative, SDZ IMM 125;in vitro andin vivo pharmacologic effects.Transplant Proc. 24:31–38 (1992).
R. Kawai and M. Lemaire. Role of blood cell uptake on cyclosporine pharmacokinetics. In Proc. Int'l. Symp. on Blood Binding and Drug Transfer, J. P. Tillement and H. Eckert (eds.), Fort et Clair. Paris, 1993, pp. 89–108.
F. Y. Bois, L. Zeise, and T. N. Tozer. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: Tetrachloroethylene in mice, rats, and humans.Toxicol. Appl. Pharmacol. 102:300–315 (1990).
D. M. Hetrick, A. M. Jarabek, and C. C. Travis. Sensitivity analysis for physiologically based pharmacokinetic models.J. Pharmacokin. Biopharm. 19:1–20 (1991).
Advanced Continuous Simulation Language (ACSL), Mitchell and Gauthier Associates, Concord, MA, 1987.
E. C. Steiner, P. S. McCroskey, and T. D. Rev.SimuSolv: Modeling and Simulation Software, Reference Guide, Dow Chemical, Midland, MI, 1990.
L. J. Notarianni. Plasma protein binding of drugs in pregnancy and in neonates.Clin. Pharmacokin. 18:20–36 (1990).
S. M. Wallace and R. K. Verbeeck. Plasma protein binding of drugs in the elderly.Clin. Pharmacokin. 12:41–72 (1987).
D. Alvarez, R. Mastai, A. Lennie, G. Soifer, D. Levi, and R. Terg. Noninvasive measurement of portal venous blood flow in patients with cirrhosis: Effect of physiological and pharmacological response.Digest. Dis. Sci. 36:82–86 (1991).
B. C. Chen, S.-C. Huang, G. Germano, W. Kuhle, R. A. Hawkins, D. Buxton, R. C. Brunken, H. R. Schelbert, and M. E. Phelps. Noninvasive quantification of hepatic arterial blood flow with nitrogen-13-ammonia and dynamic positron emission tomography.J. Nucl. Med. 32:2219–2228 (1991).
J. R. Horn, B. Zierler, L. A. Bauer, W. Reiss, and J. E. Strandness. Estimation of hepatic blood flow in branches of hepatic vessels utilizing a noninvasive, duplex doppler method.J. Clin. Pharmacol. 30:922–929 (1990).
F. Weber, M. Anlauf, and M. Serdarevic. Noninvasive, quantitative determination of muscle blood flow in man by a combination of venous-occlusion plethsmography and computed tomography.Basic Res. Cardiol. 83:327–341 (1988).
A. L. Hinderliter, M. A. Fitzpatrick, N. Schork, and S. Julius. Research utility of noninvasive methods for measurement of cardiac output.Clin. Pharmacol. Ther. 42:419–425 (1987).
W. Weber, M. Looby, and J. Brockmoeller. Evaluation of hepatic function using the pharmacokinetics of a therapeutically administered drug. Application to the immunosuppresant cyclosporin.Clin. Pharmacokin. 23:69–83 (1992).
W. R. Crom, S. L. Webster, L. Bobo, M. E. Teresi, M. V. Relling, and W. E. Evans. Simultaneous administration of multiple model substrates to assess hepatic drug clearance.Clin. Pharmacol. Ther. 41:645–650 (1987).