Physiological traits and indices to identify tolerant genotypes in sesame (Sesamum indicum L.) under deficit soil moisture condition

Plant Physiology Reports - Tập 27 - Trang 744-754 - 2022
K. Gopika1,2, P. Ratnakumar1, Arti Guhey2, Ch.L.N. Manikanta1,2, Brij B. Pandey1, K. T. Ramya1, A. L. Rathnakumar1
1ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, India
2Indira Gandhi Agriculture University, Raipur, India

Tóm tắt

The potential yield of the sesame (Sesamum indicum L.) crop is difficult to realize as the crop is prone to water-limited conditions due to the consequences of current climate change and water scarcity. Severe moisture deficit drastically affects the crop growth and yield. There is an absolute need to understand different physiological traits and derived indices that can be employed to select moisture stress-tolerant genotypes in sesame. Therefore, an experiments were conducted under irrigated (IR) and deficit soil moisture (DS) stress conditions with a set of twenty-five genotypes. The physiological traits like gas-exchange parameters, relative water content (RWC), leaf area ratio (LAR) and intrinsic water use efficiency (iWUE) increased conferring the moisture stress tolerance along with different indices such as stress tolerance index (STI), mean productivity index (MPI), geometric mean productivity (GMP), yield index (YI), stress tolerance (TOL), and yield stability index (YSI). These indices were derived based on the yield under irrigated (Yp) and stress (Ys) conditions. Seed yield decreased by almost 54%, under DS compared to IR conditions; however, genotypes SI 1802 and SI 9823 had maximum seed yield of 17.98 g and 15.90 g under IR and 11.47 g and 11 g under DS conditions. In addition, the factor analysis revealed that the genotypes SI 1802 and SI 9823 expressed higher values for indices i.e., STI, MPI, and GMP under moisture stress along with higher seed yield. These identified genotypes may be used in breeding programs for the development of varieties.

Tài liệu tham khảo

Abd El-Mohsen, A. A., El-Shafi, A., Gheith, M. A., & Suleiman, H. S. (2015). Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Advance in Agriculture and Biology, 4(1), 19–30. https://doi.org/10.15192/PSCP.AAB.2015.4.1.1930 Ali, F., Umar, M., & Siddiqui, Z. S. (2021). Comparative physiological assessment of some edible oil-seed crops under drought stress environment using fluorescence and IR imaging techniques. Pakistan Journal of Botany, 53(4), 1183–1192. https://doi.org/10.30848/PJB2021-4(13) Anonymous. (2020–21). Indiastat Agriculture, Agriculture Development in India. Agriculture Growth Statistics of India. https://www.indiastat.com/data/agriculture. Asl, R. G., Hamdollah, K. A., Mehrdad, Y., Golomreza, A., Leila, G. A., & Taregh, G. (2011). Evaluation of drought tolerance indices and grain yield in wheat genotypes using principal components analysis. Middle-East Journal of Scientific Research, 8(5), 880–884. Bahrami, F., Arzani, A., & Karimi, V. (2014). Evaluation of yield based drought tolerance indices for screening safflower genotypes. Agronomy Journal, 106(4), 1219–1224. https://doi.org/10.2134/agronj13.0387 Bansal, K. C., & Sinha, S. K. (1991). Assessment of drought resistance in 20 accessions of Triticum aestivum and related species. Part I: Total dry matter and grain yield stability. Euphytica, 56, 7–14. https://doi.org/10.1007/BF00041738 Barr, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15, 413–428. https://doi.org/10.1071/BI9620413 Belko, N., Cisse, N., Diop, N., deye, N., Zombre, G., Thiaw, S., Muranaka, S., & Jeffrey, D. E. (2014). Selection for post flowering drought resistance in short and medium-duration cowpeas using stress tolerance indices. Crop Science, 54, 1–9. https://doi.org/10.2135/cropsci2012.12.0685 Benjamin, J. G., & Nielsen, D. C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, 97, 248–253. https://doi.org/10.1016/j.fcr.2005.10.005 Borchani, C., Besbes, S., Blecker, C. H., & Attia, H. (2010). Chemical characteristics and oxidative stability of sesame seed, sesame paste, and olive oils. Journal of Agriculture Science and Technology, 12, 585–596. http://jast.modares.ac.ir/article-23-7694-en.html. Boureima, S., Diouf, M., Amoukou, A. I., & Damme, V. P. (2016). Screening for sources of tolerance to drought in sesame induced mutants: Assessment of indirect selection criteria for seed yield. International Journal of Pure and Applied Bioscience, 4(1), 45–60. https://doi.org/10.18782/2320-7051.2218 Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybean, Part I: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933–937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x Drikvand, R., Doosty, B., & Hosseinpour, T. (2012). Response of rainfed wheat genotypes to drought stress using drought tolerance indices. Journal of Agricultural Science (Toronto), 4(7), 126–131. https://doi.org/10.5539/jas.v4n7p126 Fard, A. K., & Sedaghat, S. (2013). Evaluation of drought tolerance indices in bread wheat recombinant inbred lines. European Journal of Experimental Biology, 3(2), 201–204. Farooq, M., Kobayashi, N., Ito, O., Wahid, A., & Serraj, R. (2010). Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology, 167(13), 1066–1075. https://doi.org/10.1016/j.jplph.2010.03.003 Farshadfar, E., Moradi, Z., Elyasi, P., Jamshidi, B., & Chaghakabodi, R. (2012). Effective selection criteria for screening drought tolerant landraces of bread wheat (Triticum aestivum L.). Annals of Biological Research, 3, 2507–2516. Fazeli, F., Ghorbanli, M., & Niknam, V. (2006). Effect of drought on water relations, growth and solute accumulation in two sesame cultivars. Pakistan Journal of Biological Sciences, 9, 1829–1835. https://doi.org/10.3923/pjbs.2006.1829.1835 Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In Proceeding of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Aug. 13–16, Shanhua, Taiwan (pp. 257–270). https://ci.nii.ac.jp/naid/10029135114/en/. Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 892–912. https://doi.org/10.1071/AR9780897 Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77, 523–531. https://doi.org/10.4141/P96-130 Gedam, P. A., Thangasamy, A., Shirsat, D. V., Ghosh, S., Bhagat, K. P., Sogam, O. A., & Singh, M. (2021). Screening of onion (Allium cepa L.) genotypes for drought tolerance using physiological and yield based indices through multivariate analysis. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.600371 Golbashy, M., Ebrahimi, M., Khorasani, S. K., & Choukan, R. (2010). Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. African Journal of Agricultural Research, 5(19), 2714–2719. https://doi.org/10.5897/AJAR.9000310 Hassanzadeh, M., Asghari, A., Jamaati-e-Somarin, S. H., & Saeidi, M. (2009). Effects of water deficit on drought tolerance indices of sesame genotypes in Moghan region. Research Journal of Environmental Sciences, 3, 116–121. https://doi.org/10.3923/rjes.2009.116.121 Hossain, A. B. S., Sears, A. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30, 622–627. https://doi.org/10.2135/cropsci1990.0011183X003000030030x Islam, F., Gill, R. A., Ali, B., Farooq, M. A., Xu, L., Najeeb, U., & Zhou, W. (2016). Sesame. In Breeding Oilseed Crops for Sustainable Production (pp. 135–147). Academic Press. https://doi.org/10.1016/B978-0-12-801309-0.00006-9 Keles, Y., & Oncel, I. (2004). Growth and solute composition in two wheat species experiencing combined influence of stress conditions. Russian Journal of Plant Physiology, 51, 228–233. https://doi.org/10.1023/B:RUPP.0000019215.20500.6e Khan, I. M., & Dhurve, O. P. (2016). Drought response indices for identification of drought tolerant genotypes in rainfed upland rice (Oryza sativa L.). International Journal of Environmental Science and Technology, 5, 73–83. Kumar, R., Sreenu, K., Singh, N., Jain, N., Singh, N. K., & Rai, V. (2015). Effect of drought stress on contrasting cultivars of rice. International Journal of Tropical Agriculture, 33(2), 1559–1564. Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & &Atlin, G. N. (2008). Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107, 221–231. https://doi.org/10.1016/j.fcr.2008.02.007 Lima, M. S. R., Rocha, M. S., Melo, M. D. S., & Dutra, W. F. (2018). Physiological, biochemical and productive changes in sesame genotypes subjected to different rates of water replenishment. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(3), 176–182. https://doi.org/10.1590/1807-1929/agriambi.v22n3p176-182 Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives Of Biochemistry And Biophysics, 444, 139–158. https://doi.org/10.1016/j.abb.2005.10.018 Mardeh, A. S. S., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2–3), 222–229. https://doi.org/10.1016/j.fcr.2006.02.001 Mau, Y. S., Ndiwa, A. S., Oematan, S. S., & Markus, J. E. (2019). Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. Australian Journal of Crop Science, 13(1), 170–178. https://doi.org/10.3316/informit.338026436411593 Medeiros, D. B., Da Silva, E. C., Santos, H. R. B., Pacheco, C. M., Musser, R. D. S., & Nogueira, R. J. M. C. (2012). Physiological and biochemical responses to drought stress in Barbados cherry. Brazilian Journal of Plant Physiology, 24(3), 181–192. https://doi.org/10.1590/S1677-04202012000300005 Memon, M. H., Arain, S. M., Mari, S. N., Metilo, W. A., Shah, S. R. A., & Channa, G. S. (2019). Screening of drought tolerant wheat (Triticum aestivum L.) genotypes using stress tolerance indices and principle component analysis. International Journal of Biosciences, 15(3), 130–136. https://doi.org/10.12692/ijb/15.3.130-136 Mensah, J. K., Obadoni, B. O., Eruotor, P., & Onome-Trieguna, F. (2006). Simulated flooding and drought effects on germination, growth and yield parameters of sesame. African Journal of Biotechnology, 13, 1249–1253. Mevlut, A., & Sait, C. (2011). Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Zemdirbyste Agriculture, 98(2), 157–166. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6), 758–762. Mollasadeghi, V., Mirzamasoumzadeh, B., & Ahadzadeh, B. (2014). Effect of potassium humate on the grain yield of wheat under drought stress. Advances in Environmental Biology, 8(17), 117–119. Naghavi, M. R., Aboughadareh, A. P., & Khalili, M. (2013). Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae, 5(3), 388–393. https://doi.org/10.15835/nsb539049 Negarestani, M., Tohidi-Nejad, E., Khajoei-Nejad, G., Nakhoda, B., & Mohammadi-Nejad, G. (2019). Comparison of different multivariate statistical methods for screening the drought tolerant genotypes of pearl millet (Pennisetum americanum L.) and sorghum (Sorghum bicolor L.). Agronomy. https://doi.org/10.3390/agronomy9100645 Pandey, B. B., Ratnakumar, P., Usha, K. B., Dudhe, M. Y., Lakshmi, G. S., Ramesh, K., & Guhey, A. (2021). Identifying traits associated with terminal drought tolerance in sesame (Sesamum indicum L.) Genotypes. Frontiers in Plant Science, 12, 739896. https://doi.org/10.3389/fpls.2021.739896 Pandey, B. B. (2020). Physiological mining of sesame (Sesamum indicum L.) for maximization of yield and it’s biochemical profile under moisture stress conditions. Ph.D. (Ag.) Thesis. Department of plant physiology agricultural biochemistry, medicinal and aromatic plants, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India (pp. 455). Pandey, B. B., Pasala, R., Kulasekaran, R., Qureshi, A. A., Gandi, S. L., & Guhey, A. (2022). Leaf potassium status for drought tolerance: The hunt for promising sesame (Sesamum indicum L.) accessions. Journal of Plant Nutrition, 45, 1–13. https://doi.org/10.1080/01904167.2022.2043374 Pinto, C. M., Ta´vora, F. J. A. F., & de Pinto, O. R. (2014). Water relations, gas exchange in peanuts, sesame and castor beans subjected to water deficit cycles. Technical Agriculture, 35(1), 31–40. https://doi.org/10.25066/agrotec.v35i1.9867 Praba, M. L., Cairns, J. E., Babu, R. C., & Lafitte, H. R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science, 195, 30–46. https://doi.org/10.1111/j.1439-037X.2008.00341.x Purbajanti, E. D., Kusmiyati, F., & Fuskhah, E. (2017). Growth, yield and physiological characters of three types of Indonesianrice under limited water supply. Asian Journal of Plant Science, 16, 101–108. https://doi.org/10.3923/ajps.2017.101.108 Qaderi, M., Kurepin, L. V., & Reid, D. M. (2006). Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiologia Plantarum, 128, 710–721. https://doi.org/10.1111/j.1399-3054.2006.00804.x Radford, P. J. (1967). Growth analysis formulae---their use and abuse. Crop Science, 7, 171–175. https://doi.org/10.2135/cropsci19670011183X000700030001x Ramirez Vallejo, P., & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica, 99, 127–136. https://doi.org/10.1023/A:1018353200015 Ramya, K. T., Ratnakumar, P., Darphan, M., & Ranganatha, A. R. G. (2021). Development and genetic analysis of conspicuous purple coloured corolla lip flower with multi capsules genotype in sesame (Sesamum indicum L.). Journal of Genetics, 100, 82. https://doi.org/10.1007/s12041-021-01335-w Ratnakumar, P., Pandey, B. B., Ramesh, K., Lakshmi, G. S., Guhey, A., & Reddy, A. V. (2021). An insight into the mechanisms of intermittent drought adaptation in sesame (Sesamum indicum L.): Linking transpiration efficiency and root architecture to seed yield. Acta Physiologiae Plantarum, 43, 148. https://doi.org/10.1007/s11738-021-03324-z Ratnakumar, P., & Ramesh, K. (2019). Identification of appropriate sesame variety under changing climate scenario: A field study. Journal of Oilseeds Research, 36(4), 54–56. Ravitej, K. N., Ratnakumar, P., Pandey, B. B., Reddy, S. N., Shnaker, G., & Padmaja, D. (2019). Morpho-physiological and yield traits of sesame varieties under rainfed conditions. Journal of Oilseeds Research, 36(3), 16–21. Rizza, F., Badeckb, F. W., Cattivellia, L., Lidestric, O., Di Fonzoc, N., & Stancaa, A. M. (2004). Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science, 44, 2127–2137. https://doi.org/10.2135/cropsci2004.2127 Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21, 943–946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x Saba, J., Moghaddam, M., Ghassemi, K., & Nishabouri, M. R. (2001). Genetic properties of resistance indices. Journal of Agriculture Science and Technology, 3, 43–49. Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., & Rosales, M. A. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178, 30–40. https://doi.org/10.1016/j.plantsci.2009.10.001 Seyni, B., Diouf, M., & Cisse, N. (2010). Need for water, growth and productivity of sesame (Sesamum indicum L.) in semiarid zone. CERAAS/ISRA, 22(2), 139–147. Singh, M. J., Kumar, V., & Sharma (2016). Training manual of watershed management (pp. 275). ICARDA Publication. Singh, B., Reddy, K. R., Redoña, E. D., & Walker, T. (2017). Screening of rice cultivars for morpho-physiological responses to early-season soil moisture stress. Rice Science, 24(6), 322–335. https://doi.org/10.1016/j.rsci.2017.10.001 Son, D., Compaore, E., Bonkoungou, S., & Sangare, S. (2011). Effect of water stress on sesame growth and production (Sesamum indicum L.). Journal of Applied Biosciences, 37, 2460–2467. Sravanthi, L., Ratnakumar, P., Reddy, S. N., Eswari, K. B., Pandey, B. B., Manikanta, C. L. N., Sonia, E., Gopika, K., Anusha, L. P., Ramya, K. T., & Yadav, P. (2021). Morpho-physiological, quality traits and their association with seed yield in sesame (Sesamum indicum L.) indigenous collection under deficit moisture stress. Plant Physiology Reports, 27, 132–142. https://doi.org/10.1007/s40502-021-00621-0 Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal (4th Ed., pp. 848). Porto Alegre: Artmed. Yol, E., & Uzun, B. (2018). Influences of genotype and location interactions on oil, fatty acids and agronomical properties of groundnuts. Grasasy Aceites. https://doi.org/10.3989/gya.0109181