Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phản ứng sinh lý và khả năng chịu đựng của cây lanh (Linum usitatissimum L.) với căng thẳng từ chì
Tóm tắt
Cây lanh (Linum usitatissimum L.) là một loại cây thương mại phổ biến, được trồng rộng rãi để lấy sợi, dầu và sản phẩm dược liệu trên toàn cầu. Để chọn lọc các giống lanh có khả năng chịu đựng chì (Pb) và khám phá cơ chế liên quan đến khả năng chịu đựng dưới căng thẳng Pb, 19 giống lanh đã được trồng bằng phương pháp thủy canh với Pb(NO3)2 được bổ sung. Kết quả cho thấy giống L. usitatissimum ‘Milas’ thể hiện khả năng chịu đựng cao nhất đối với căng thẳng Pb, trong khi đó giống L. usitatissimum ‘Yuan 2000’ là giống nhạy cảm nhất dưới 1 mM Pb(NO3)2. Giống ‘Milas’ tích lũy Pb ít hơn so với giống ‘Yuan 2000’. Ngoài ra, dưới căng thẳng Pb, hoạt động của enzyme peroxidase (POD) và superoxide dismutase (SOD) cao hơn ở ‘Milas’ so với ‘Yuan 2000’, trong khi hàm lượng malondialdehyde (MDA) của phần trên mặt đất và rễ ở ‘Milas’ thấp hơn so với ‘Yuan 2000’. Mức độ biểu hiện của các gen liên quan đến stress kim loại nặng cao hơn ở ‘Milas’ so với ‘Yuan 2000’. Kết quả của chúng tôi cung cấp thông tin về việc chọn giống lanh có khả năng chịu đựng Pb và các cơ chế liên quan đến phản ứng với căng thẳng Pb.
Từ khóa
#lanh #chì #khả năng chịu đựng #stress kim loại nặng #peroxidase #superoxide dismutaseTài liệu tham khảo
Alamri S, Siddiqui M, Al-Khaishany M, Nasir M, Ali H, Alaraidh I, Alsahli A, Al-Rabiah H, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13:409–419
Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19(3):197–205
Ajuwon OR (2010) Growth and antioxidative responses to excess cadmium in kenaf (Hibiscus cannabinus L.). Fresenius Environ Bull 19:2637–2643
Antonkiewicz J, Para A (2016) The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremediat 18(3):245–250
Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20(2):12
Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332
Berna A, François B (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39(3):539–549
Bączek-Kwinta R, Bartoszek A, Kusznierewicz B, Antonkiewicz J (2011) Physiological response of plants and cadmium accumulation in heads of two cultivars of white cabbage. J Elem 16(3):355–364
Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254
Deng Y, Li D, Huang Y, Huang S (2017) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Ind Crop Prod 107:453–457
Du Z, Chen M, Chen Q, Gu J, Chye M (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb (II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117
Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:1–17
Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544
Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161
Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465
Hu H, Jin Q, Kavan P (2014) A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustain Basel 6:5820–5838
Jiang L, Wang W, Chen Z, Gao Q, Xu Q, Cao H (2017) A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Sci 256:94–102
Jiang N, Luo X, Zeng J, Yang RZ, Zheng LY, Wang S (2010) Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings. Int J Agric Biol 12(2):1560–8530
Jiang W, Liu D (2000) Effects of Pb2+, on root growth, cell division, and nucleolus of Zea mays L. Bull Environ Contam Toxicol 65(6):786–793
Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Bio 334(2):118–126
Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140
Liu X, Qi C, Wang Z, Ouyang C, Li Y, Yan D, Wang Q, Guo M, Yuan Z, He F (2018) Biochemical and ultrastructural changes induced by lead and cadmium to crofton weed (Eupatorium adenophorum, Spreng.). Int J Environ Res 12(5):597–607
Marie B, Václava G, Miroslav G (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crop Prod 33(3):761–774
Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424:83–95
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136
Qiu R, Zhao X, Tang Y, Yu F, Hu P (2009) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12
Reis G, Almeida A, Almeida N, Castro A, Mangabeira P, Pirovani C (2015) Molecular, biochemical and ultrastructural changes induced by Pb toxicity in seedlings of Theobroma cacao L. PLoS ONE 10:e129696
Sai K, Ben A, Ennajah A, Leclerc J, Ouerghi Z, Karray N (2018) Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). Int J Environ Res 9(2):613–620
Sengar RS, Gautam M, Garg SK, Sengar K (2008) Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93
Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physl 48(4):523–544
Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27(5):555–561
Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem 105:290–296
Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke I, Maathuis F, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542
Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999
Verma S, Dubey R (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):655
Xiao S, Gao W, Chen Q, Ramalingam S, Chye M (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. PLANT J 54:141–151
Xu B, Wang Y, Zhang S, Guo Q, Jin Y, Chen J, Gao Y, Ma H (2017) Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. Plos One 12: e175307
Zhang LL, Zhu XM, Kuang YW (2017) Responses of Pinus massoniana seedlings to lead stress. Biol Plant 61:785–790