Phản ứng sinh lý và khả năng chịu đựng của cây lanh (Linum usitatissimum L.) với căng thẳng từ chì

Springer Science and Business Media LLC - Tập 42 - Trang 1-9 - 2020
Gen Pan1, Lining Zhao1, Jianjun Li1, Siqi Huang1, Huijuan Tang1, Li Chang1, Zhigang Dai1, Anguo Chen1, Defang Li1, Zheng Li1, Yong Deng1
1Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China

Tóm tắt

Cây lanh (Linum usitatissimum L.) là một loại cây thương mại phổ biến, được trồng rộng rãi để lấy sợi, dầu và sản phẩm dược liệu trên toàn cầu. Để chọn lọc các giống lanh có khả năng chịu đựng chì (Pb) và khám phá cơ chế liên quan đến khả năng chịu đựng dưới căng thẳng Pb, 19 giống lanh đã được trồng bằng phương pháp thủy canh với Pb(NO3)2 được bổ sung. Kết quả cho thấy giống L. usitatissimum ‘Milas’ thể hiện khả năng chịu đựng cao nhất đối với căng thẳng Pb, trong khi đó giống L. usitatissimum ‘Yuan 2000’ là giống nhạy cảm nhất dưới 1 mM Pb(NO3)2. Giống ‘Milas’ tích lũy Pb ít hơn so với giống ‘Yuan 2000’. Ngoài ra, dưới căng thẳng Pb, hoạt động của enzyme peroxidase (POD) và superoxide dismutase (SOD) cao hơn ở ‘Milas’ so với ‘Yuan 2000’, trong khi hàm lượng malondialdehyde (MDA) của phần trên mặt đất và rễ ở ‘Milas’ thấp hơn so với ‘Yuan 2000’. Mức độ biểu hiện của các gen liên quan đến stress kim loại nặng cao hơn ở ‘Milas’ so với ‘Yuan 2000’. Kết quả của chúng tôi cung cấp thông tin về việc chọn giống lanh có khả năng chịu đựng Pb và các cơ chế liên quan đến phản ứng với căng thẳng Pb.

Từ khóa

#lanh #chì #khả năng chịu đựng #stress kim loại nặng #peroxidase #superoxide dismutase

Tài liệu tham khảo

Alamri S, Siddiqui M, Al-Khaishany M, Nasir M, Ali H, Alaraidh I, Alsahli A, Al-Rabiah H, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13:409–419 Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19(3):197–205 Ajuwon OR (2010) Growth and antioxidative responses to excess cadmium in kenaf (Hibiscus cannabinus L.). Fresenius Environ Bull 19:2637–2643 Antonkiewicz J, Para A (2016) The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremediat 18(3):245–250 Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20(2):12 Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332 Berna A, François B (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39(3):539–549 Bączek-Kwinta R, Bartoszek A, Kusznierewicz B, Antonkiewicz J (2011) Physiological response of plants and cadmium accumulation in heads of two cultivars of white cabbage. J Elem 16(3):355–364 Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254 Deng Y, Li D, Huang Y, Huang S (2017) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Ind Crop Prod 107:453–457 Du Z, Chen M, Chen Q, Gu J, Chye M (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb (II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117 Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:1–17 Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544 Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161 Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465 Hu H, Jin Q, Kavan P (2014) A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustain Basel 6:5820–5838 Jiang L, Wang W, Chen Z, Gao Q, Xu Q, Cao H (2017) A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Sci 256:94–102 Jiang N, Luo X, Zeng J, Yang RZ, Zheng LY, Wang S (2010) Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings. Int J Agric Biol 12(2):1560–8530 Jiang W, Liu D (2000) Effects of Pb2+, on root growth, cell division, and nucleolus of Zea mays L. Bull Environ Contam Toxicol 65(6):786–793 Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Bio 334(2):118–126 Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140 Liu X, Qi C, Wang Z, Ouyang C, Li Y, Yan D, Wang Q, Guo M, Yuan Z, He F (2018) Biochemical and ultrastructural changes induced by lead and cadmium to crofton weed (Eupatorium adenophorum, Spreng.). Int J Environ Res 12(5):597–607 Marie B, Václava G, Miroslav G (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crop Prod 33(3):761–774 Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424:83–95 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410 Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136 Qiu R, Zhao X, Tang Y, Yu F, Hu P (2009) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12 Reis G, Almeida A, Almeida N, Castro A, Mangabeira P, Pirovani C (2015) Molecular, biochemical and ultrastructural changes induced by Pb toxicity in seedlings of Theobroma cacao L. PLoS ONE 10:e129696 Sai K, Ben A, Ennajah A, Leclerc J, Ouerghi Z, Karray N (2018) Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). Int J Environ Res 9(2):613–620 Sengar RS, Gautam M, Garg SK, Sengar K (2008) Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93 Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physl 48(4):523–544 Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27(5):555–561 Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem 105:290–296 Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke I, Maathuis F, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542 Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999 Verma S, Dubey R (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):655 Xiao S, Gao W, Chen Q, Ramalingam S, Chye M (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. PLANT J 54:141–151 Xu B, Wang Y, Zhang S, Guo Q, Jin Y, Chen J, Gao Y, Ma H (2017) Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. Plos One 12: e175307 Zhang LL, Zhu XM, Kuang YW (2017) Responses of Pinus massoniana seedlings to lead stress. Biol Plant 61:785–790