Physiological functions of thioredoxin and thioredoxin reductase

FEBS Journal - Tập 267 Số 20 - Trang 6102-6109 - 2000
Elias S.J. Arnér1, Arne Holmgren1
1Medical Nobel Institute for Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

Tóm tắt

Thioredoxin, thioredoxin reductase and NADPH, the thioredoxin system, is ubiquitous from Archea to man. Thioredoxins, with a dithiol/disulfide active site (CGPC) are the major cellular protein disulfide reductases; they therefore also serve as electron donors for enzymes such as ribonucleotide reductases, thioredoxin peroxidases (peroxiredoxins) and methionine sulfoxide reductases. Glutaredoxins catalyze glutathione‐disulfide oxidoreductions overlapping the functions of thioredoxins and using electrons from NADPH via glutathione reductase. Thioredoxin isoforms are present in most organisms and mitochondria have a separate thioredoxin system. Plants have chloroplast thioredoxins, which via ferredoxin–thioredoxin reductase regulates photosynthetic enzymes by light. Thioredoxins are critical for redox regulation of protein function and signaling via thiol redox control. A growing number of transcription factors including NF‐κB or the Ref‐1‐dependent AP1 require thioredoxin reduction for DNA binding. The cytosolic mammalian thioredoxin, lack of which is embryonically lethal, has numerous functions in defense against oxidative stress, control of growth and apoptosis, but is also secreted and has co‐cytokine and chemokine activities. Thioredoxin reductase is a specific dimeric 70‐kDa flavoprotein in bacteria, fungi and plants with a redox active site disulfide/dithiol. In contrast, thioredoxin reductases of higher eukaryotes are larger (112–130 kDa), selenium‐dependent dimeric flavoproteins with a broad substrate specificity that also reduce nondisulfide substrates such as hydroperoxides, vitamin C or selenite. All mammalian thioredoxin reductase isozymes are homologous to glutathione reductase and contain a conserved C‐terminal elongation with a cysteine–selenocysteine sequence forming a redox‐active selenenylsulfide/selenolthiol active site and are inhibited by goldthioglucose (aurothioglucose) and other clinically used drugs.

Từ khóa


Tài liệu tham khảo

10.1002/9780470123096.ch2

10.1146/annurev.bi.54.070185.001321

Williams C.H. Jr, 1992, Chemistry and Biochemistry of Flavoenzymes, 121

10.1016/S0021-9258(18)71625-6

10.1016/S0969-2126(01)00153-8

10.1016/S0076-6879(99)00129-9

10.1016/s0968-0004(98)01335-8

Huber H.E., 1987, Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates, J. Biol. Chem., 262, 16224, 10.1016/S0021-9258(18)47719-8

Russel M., 1986, The role of thioredoxin in filamentous phage assembly. Construction, isolation and characterization of mutant thioredoxins, J. Biol. Chem., 261, 14997, 10.1016/S0021-9258(18)66819-X

10.1093/emboj/17.9.2596

10.1126/science.287.5453.655

10.3109/10715769209079515

Holmgren A., 1998, Oxidative Stress, Cancer, AIDS and Neurodegenerative Diseases, 229

10.1073/pnas.91.5.1672

10.1073/pnas.94.8.3633

10.1096/fasebj.10.7.8635688

10.1074/jbc.274.39.27891

10.1006/meth.1996.0424

10.1146/annurev.pharmtox.39.1.67

10.1006/viro.1999.9736

10.1146/annurev.immunol.15.1.351

10.1074/jbc.273.11.6297

10.1074/jbc.272.49.30615

10.1016/S0021-9258(18)35742-9

10.1073/pnas.87.21.8282

10.1016/0167-4781(94)90180-5

Rubartelli A., 1995, High rates of thioredoxin secretion correlate with growth arrest in hepatoma cells, Cancer Res., 55, 675

10.1016/s0891-5849(97)00429-2

Yoshida S., 1999, Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF‐alpha‐induced production of IL‐6 and IL‐8 from cultured synovial fibroblasts, J. Immunol., 163, 351, 10.4049/jimmunol.163.1.351

Nakamura H., 1996, Elevation of plasma thioredoxin levels in HIV‐infected individuals, Int. Immunol., 8, 603, 10.1093/intimm/8.4.603

Schenk H., 1996, Thioredoxin as a potent costimulus of cytokine expression, J. Immunol., 156, 765, 10.4049/jimmunol.156.2.765

10.1084/jem.189.11.1783

10.1006/excr.1997.3699

Silberstein D.S., 1993, Human eosinophil cytotoxicity‐enhancing factor. Eosinophil‐stimulating and dithiol reductase activities of biosynthetic (recombinant) species with COOH‐terminal deletions, J. Biol. Chem., 268, 9138, 10.1016/S0021-9258(18)52988-4

10.1016/0008-8749(85)90257-6

10.1002/prot.340110103

10.1016/S0969-2126(96)00079-2

10.1016/S0969-2126(94)00086-7

10.1021/bi00088a023

10.1016/S0969-2126(01)00154-X

10.1042/0264-6021:3390001

10.1074/jbc.275.3.1902

10.1006/bbrc.1997.8003

10.1074/jbc.273.30.19160

10.1006/geno.1996.4493

10.1002/biof.5520100220

10.1074/jbc.272.5.2936

10.1073/pnas.93.3.1006

10.1073/pnas.93.12.6146

10.1111/j.1432-1033.1992.tb17068.x

10.1016/S0021-9258(18)42403-9

10.1016/S0021-9258(18)43889-6

10.1074/jbc.270.20.11761

10.1006/dbio.1996.0208

10.1073/pnas.94.11.5531

10.1074/jbc.m000690200

10.1074/jbc.273.15.8581

10.1073/pnas.100114897

10.1073/pnas.94.8.3621

10.1073/pnas.050579797

10.1074/jbc.274.35.24522

10.1046/j.1432-1327.1999.00286.x

10.1016/s0891-5849(97)00216-5

10.1046/j.1432-1327.1999.00578.x

10.1006/jmbi.1999.3085

Söderberg A., 2000, Thioredoxin reductase, a redox‐active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma, Cancer Res., 60, 2281

10.1042/0264-6021:3470661

10.1016/S0021-9258(18)97742-2

10.1111/j.1432-1033.1968.tb00470.x

10.1016/0076-6879(84)07019-1

10.1093/emboj/17.19.5543

10.1016/S0076-6879(99)00128-7

10.1073/pnas.96.3.887

Brot N., 1991, Biochemistry of methionine sulfoxide residues in proteins, Biofactors, 3, 91

10.1046/j.1365-2958.1999.01636.x

10.1074/jbc.274.12.7695

10.1007/BF00408300

10.1016/0003-9861(91)90157-E

10.1016/0891-5849(92)90165-D

10.1093/molehr/4.4.369

10.1152/ajplung.1999.276.3.L530

10.1016/0006-8993(94)90241-0

10.1074/jbc.272.29.18044

10.1016/0888-7543(95)80223-9

10.1016/S0021-9258(19)37617-3