Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant
Tóm tắt
Rapeseed (
In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the
This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.
Từ khóa
Tài liệu tham khảo
Kaur H, Wang L, Stawniak N, Sloan R, van Erp H, Eastmond P, Bancroft I. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. Plant Biotechnol J. 2020;18:983–91.
Wang X, Zheng M, Liu H, Zhang L, Chen F, Zhang W, et al. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnol Biofuels. 2020;13:42.
Pullen J, Saeed K. Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Process Technol. 2015;130:127–35.
Ding LN, Li T, Guo XJ, Li M, Liu XY, Cao J, et al. Sclerotinia stem rot resistance in rapeseed: recent progress and future prospects. J Agric Food Chem. 2021;69:2965–78.
Ploschuk RA, Miralles DJ, Colmer TD, Ploschuk EL, Striker GG. Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield. Front Plant Sci. 2018;9:1863.
Leul M, Zhou WJ. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul. 1999;18:9–14.
Lee YH, Kim KS, Jang YS, Hwang JH, Lee DH, Choi IH. Global gene expression responses to waterlogging in leaves of rape seedlings. Plant Cell Rep. 2014;33:289–99.
Xu J, Qiao X, Tian Z, Zhang X, Zou X, Cheng Y, et al. Proteomic analysis of rapeseed root response to waterlogging stress. Plants. 2018;7:71.
Herzog M, Striker GG, Colmer TD, Pedersen O. Mechanisms of waterlogging tolerance in wheat—a review of root and shoot physiology. Plant Cell Environ. 2016;39:1068–86.
Ren B, Zhang J, Dong S, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE. 2016;11: e0161424.
Men S, Chen H, Chen S, Zheng S, Shen X, Wang C, et al. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci Rep. 2020;10:10201.
Yan LY, Kang YP, Lei Y, Huang JQ, Wan LY, Liao BS. First report of Sclerotinia sclerotiorum causing sclerotinia blight on peanut (Arachis hypogaea) in Northeastern China. Plant Dis. 2014;98:156.
Zou X, Hu C, Zeng L, Cheng Y, Xu M, Zhang X. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS ONE. 2014;9: e89731.
Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 2012;35:1618–30.
Yamauchi T, Abe F, Tsutsumi N, Nakazono M. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Front Plant Sci. 2019;10:259.
Pedersen O, Nakayama Y, Yasue H, Kurokawa Y, Takahashi H, Heidi Floytrup A, et al. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize. New Phytol. 2021;229:94–105.
van Dongen JT, Fröhlich A, Ramírez-Aguilar SJ, Schauer N, Fernie AR, Erban A, et al. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot. 2009;103:269–80.
Xie YY, Yu CB, Hou JJ, Hu XJ, Li YS, Shen H, et al. Effect of low oxygen stress on adventitious roots of rape seedlings. Chin J Oil Crop Sci. 2013;35:284–9.
Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, et al. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot. 2000;51:89–97.
Yang SH, Choi D. Characterization of genes encoding ABA 8′-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Biophys Res Commun. 2006;350:685–90.
Bashar KK. Hormone dependent survival mechanisms of plants during post-waterlogging stress. Plant Signal Behav. 2018;13: e1529522.
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC Plant Biol. 2020;20:44.
Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, et al. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant Cell Environ. 2019;42:1458–70.
Qi X, Li Q, Shen J, Qian C, Xu X, Xu Q, et al. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant Cell Environ. 2020;43:1545–57.
Zhang XK, Fan QX, Chen J, Li JN, Wang HZ. Physiological reaction differences of different waterlogging tolerant genotype rapeseed (Brassica napus L.) to anoxia. Sci Agric Sin. 2007;40:485–91.
Saigo T, Wang T, Watanabe M, Tohge T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr Opin Plant Biol. 2020;55:93–9.
Ding LN, Li M, Guo XJ, Tang MQ, Cao J, Wang Z, et al. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnol J. 2020;18:1255–70.
Qin L, Sun L, Wei L, Yuan J, Kong F, Zhang Y, Miao X, Xia G, Liu S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J. 2021;105:1010–25.
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23:1512–22.
Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry. 2014;103:38–49.
Xie Y, Tan H, Ma Z, Huang J. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Mol Plant. 2016;9:711–21.
An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant J. 2020;101:573–89.
Ni J, Zhao Y, Tao R, Yin L, Gao L, Strid Å, et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol J. 2020;18:1223–40.
Cheng J, Wei G, Zhou H, Gu C, Vimolmangkang S, Liao L, Han Y. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol. 2014;166:1044–58.
Naing AH, Park DY, Park KI, Kim CK. Differential expression of anthocyanin structural genes and transcription factors determines coloration patterns in gerbera flowers. 3 Biotech. 2018;8:393.
Wang N, Liu W, Zhang T, Jiang S, Xu H, Wang Y, et al. Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis. J Agric Food Chem. 2018;66:7076–86.
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54:733–49.
Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999;11:1337–50.
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53:814–27.
Shin DH, Cho M, Choi MG, Das PK, Lee SK, Choi SB, et al. Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis. Plant Cell Rep. 2015;34:805–15.
Bedoya LC, Martínez F, Orzáez D, Daròs JA. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol. 2012;158:1130–8.
Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, et al. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant J. 2019;99:733–51.
Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, et al. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol Plant. 2020;13:42–58.
Yan S, Chen N, Huang Z, Li D, Zhi J, Yu B, et al. Anthocyanin fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytol. 2020;225:2048–63.
Bai H, Song Z, Zhang Y, Li Z, Wang Y, Liu X, et al. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). Theor Appl Genet. 2020;133:1911–26.
An JP, Wang XF, Zhang XW, Xu HF, Bi SQ, You CX, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol J. 2020;18:337–53.
Zhu Z, Li G, Liu L, Zhang Q, Han Z, Chen X, et al. A R2R3-MYB transcription factor, VvMYBC2L2, functions as a transcriptional repressor of anthocyanin biosynthesis in grapevine (Vitis vinifera L.). Molecules. 2018;24:92.
Liu R, Ding LN, Li M, Cao W, Wang YK, Wang WJ, et al. Characterization of a rapeseed anthocyanin-more mutant with enhanced resistance to Sclerotinia sclerotiorum. J Plant Growth Regul. 2019;39:703–16.
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13–30.
Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J. 2014;80:654–68.
Prasad KVSK, Xing D, Reddy ASN. Vascular plant one-zinc-finger (VOZ) transcription factors are positive regulators of salt tolerance in Arabidopsis. Int J Mol Sci. 2018;19:3731.
Li B, Zheng JC, Wang TT, Min DH, Wei WL, Chen J, et al. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance. Int J Mol Sci. 2020;21:2177.
Wang J, Wang R, Fang H, Zhang C, Zhang F, Hao Z, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice. Mol Plant. 2021;14:253–66.
Celesnik H, Ali GS, Robison FM, Reddy AS. Arabidopsis thaliana VOZ (vascular plant one-zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open. 2013;2:424–31.
Kumar S, Choudhary P, Gupta M, Nath U. Vascular plant one-zinc finger 1 (VOZ1) and VOZ2 interact with CONSTANS and promote photoperiodic flowering transition. Plant Physiol. 2018;176:2917–30.
Luo D, Qu L, Zhong M, Li X, Wang H, Miao J, et al. Vascular plant one-zinc finger 1 (VOZ1) and VOZ2 negatively regulate phytochrome B-mediated seed germination in Arabidopsis. Biosci Biotechnol Biochem. 2020;84:1384–93.
Gao HN, Jiang H, Cui JY, You CX, Li YY. Review: The effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Sci. 2021;312: 111024.
Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, et al. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genom. 2020;21:507.
Zhang Q, Liu X, Zhang Z, Liu N, Li D, Hu L. Melatonin improved waterlogging tolerance in Alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. Front Plant Sci. 2019;10:44.
Zeng R, Chen T, Wang X, Cao J, Li X, Xu X, et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front Plant Sci. 2021;12: 601771.
Zou X, Tan X, Hu C, Zeng L, Lu G, Fu G, et al. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int J Mol Sci. 2013;14:2637–51.
Bai YC, Li CL, Zhang JW, Li SJ, Luo XP, Yao HP, et al. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant. 2014;152:431–40.
Feng X, Zhang Y, Wang H, Tian Z, Xin S, Zhu P. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. Theor Appl Genet. 2021;134:159–69.
Matsui K, Oshima Y, Mitsuda N, Sakamoto S, Nishiba Y, Walker AR, et al. Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Sci. 2018;274:466–75.
Yu Z, Dong W, Teixeira da Silva JA, He C, Si C, Duan J. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Protoplasma. 2021;258:803–15.
Kodama M, Brinch-Pedersen H, Sharma S, Holme IB, Joernsgaard B, Dzhanfezova T, et al. Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genom. 2018;19:811.
Zhao M, Li J, Zhu L, Chang P, Li L, Zhang L. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes. 2019;10:496.
An JP, Zhang XW, Liu YJ, Wang XF, You CX, Hao YJ. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. J Exp Bot. 2021;72:1460–72.
Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, et al. Differential regulation of anthocyanins in green and purple turnips revealed by combined de novo transcriptome and metabolome analysis. Int J Mol Sci. 2019;20:4387.
Chen HY, Hsieh EJ, Cheng MC, Chen CY, Hwang SY, Lin TP. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol. 2016;211:599–613.
Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, et al. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol. 2016;171:2760–70.
Fan W, Yang Y, Wang Z, Yin Y, Yu C, Shi Q, Guo J, Xuan L, Hua J. Molecular cloning and expression analysis of three ThERFs involved in the response to waterlogging stress of Taxodium ‘Zhongshanshan406’, and subcellular localization of the gene products. PeerJ. 2018;6: e4434.
Jiang W, Zhang X, Song X, Yang J, Pang Y. Genome-wide identification and characterization of APETALA2/ethylene-responsive element binding factor superfamily genes in soybean seed development. Front Plant Sci. 2020;11: 566647.
Qu Y, Nong Q, Jian S, Lu H, Zhang M, Xia K. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci. 2020;21:4586.
Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. Plant Signal Behav. 2010;5:1061–6.
Amorim LLB, da Fonseca Dos Santos R, Neto JPB, Guida-Santos M, Crovella S, Benko-Iseppon AM. Transcription factors involved in plant resistance to pathogens. Curr Protein Pept Sci. 2017;18:335–51.
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes. 2019;10:771.
Wang Y, Liu C, Li K, Sun F, Hu H, Li X, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol. 2007;64:633–44.
Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, et al. The Jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell. 2011;23(5):1795–814.
Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol. 2011;53:632–40.
Wang CK, Han PL, Zhao YW, Ji XL, Yu JQ, You CX, et al. Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26. Biochem Biophys Res Commun. 2020;533:717–22.
Zhang Y, Liu Z, Liu J, Lin S, Wang J, Lin W, et al. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. Plant Cell Rep. 2017;36:557–69.
Li D, Guo Y, Zhang D, He S, Gong J, Ma H, et al. Melatonin represses oil and anthocyanin accumulation in seeds. Plant Physiol. 2020;183:898–914.
Oraei M, Panahirad S, Zaare-Nahandi F, Gohari G. Pre-veraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. J Sci Food Agric. 2019;99:5946–52.
Zou X, Jiang Y, Zheng Y, Zhang M, Zhang Z. Prolyl 4-hydroxylase genes are subjected to alternative splicing in roots of maize seedlings under waterlogging. Ann Bot. 2011;108:1323–35.
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, et al. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biol. 2015;15:27.
Chen T, Zhang B. Measurements of proline and malondialdehyde contents and antioxidant enzyme activities in leaves of drought stressed cotton. Bio-Protoc. 2016;6: e1913.
Zhang Z, Huang R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 2013;3: e817.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:129–40.
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:3787–93.