Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress
Tóm tắt
Từ khóa
Tài liệu tham khảo
Achten WMJ, Maes WH, Reubens B, Mathij SE, Singh VP, Verchot L, Muys B (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 34:667–676
Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129
Aganchich B, Tahi H, Wahbi S, Modaffar C, Serraj R (2007) Growth, water relations and antioxidant defence mechanisms of olive (Olea europaea L.) subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosyst 141:252–264
Aganchich B, Wahbi S, Loreto F, Centritto M (2009) Partial root zone drying: Regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiol 29:685–696
Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
Artemios MB, George K (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379
Ashraf A, Aranda X, Savé R, Felicidad H, Biel C (2013) Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse. Agric Water Manag 118:150–158
Benlhabib O (2005) Les cultures alternatives: Quinoa, amarante et épeautre. Transf Technol Agric 133:1–4
Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited enviroments. Exp Agric 43:411–435
Ehlert C, Maurel C, Tardieu F, Simonneau T (2009) Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell Turgor and leaf elongation even without changing transpiration. Plant Physiol 150:1093–1104
Fghire R (2014) Effet du déficit hydrique sur le comportement écophysiologique et agronomique du quinoa (Chenopodium quinoa). Université Cadi Ayyad, Marrekech (PhD Thesis)
Fghire R, Anaya F, Oudou IA, Benlhabib O, Ragab R, Wahbi S (2015) Physiological and photosynthetic response of quinoa to drought stress. Chil J Agric 75:174–183
Fghire R, Oudou IA, Anaya F, Benlhabib O, Jacobsen SE, Wahbi S (2013) Protective Antioxidant enzyme activities are affected by drought in quinoa (Chenopodium quinoa Willd.). J Biol Agric Healthc 3:62–68
Fu GF, Song J, Li YR, Yue MK, Xiong J, Tao LX (2010) Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress. Rice Sci 17:303–310
Ge T, Sui F, Bai L, Lu Y, Zhou G (2006) Effects of water stress on the protective enzyme activities and lipid Peroxidation in roots and leaves of summer maize. Agric Sci China 5:291–298
IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. Synthesis report. IPCC, Geneva https://doi.org/10.1017/CBO9780511546013 (Contribution of Working Groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change)
Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to northern European agriculture. Studies on developmental pattern. Euphytica 96:41–48
Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287
Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475
Jensen CR, Jacobsen SE, Andersen MN, Nunez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gaSExchange and water relation characteristics of field quinoa ( Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25
Khaleghi E, Arzani K, Moallemi N, Barzegar M (2012) Evalution of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad Sci Eng Technol 68:1154–1157
Liu F, Stu H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150
Miranda-apodaca J, Yoldi-achalandabaso A, Aguirresarobe A (2018) Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agric Water Manag 203:344–352
Mujica A, Jacobsen SE, Izquierdo J, Marathée JP (2001) Quinua (Chenopodium quinoa Willd.): Ancestral cultivo andino, alimento del presente y futuro. In: Izquierdo Fernández JI et al (ed) Cultivos Andinos. FAO, Santiago (CD-ROM)
Ogaya R, Llorens L, Peñuelas J (2011) Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime. Acta Oecologica 37:381–385
Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought—mechanisms of tolerance. Funct Plant Biol 42:136–148
Riccardi M, Mele G, Pulvento C, Lavini A, Andria R, Jacobsen SE (2014) Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosyn Res 120:263–272
Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen SE (2016) Quinoa—a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst 150:357–371
Sapeta H, Miguel C, Lourenço T, Marocod J, Lindee P, Oliveira M (2013) Drought stress response in Jatropha curcas: Growth and physiology. Environ Exp Bot 85:76–84
Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou DW, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146:26–38
Steele MR, Gitelson AA, Rundquist DC (2008) A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron J 100:779–782
Sun Y, Liu F, Bendevis M, Shabala S, Jacobsen SE (2014) Sensitivity of two Quinoa ( Chenopodium quinoa Willd.) varieties to progressive drought stress. J Agron Crop Sci 200:12–23
Tahi H, Wahbi S, Wakrim R, Aganchich B, Serraj R, Centritto M (2007) Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosyst 141:265–274
Wahbi S, Wakrim R, Aganchich B, Tahi H, Serraj R (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate I. Physiological and agronomic responses. Agric Ecosyst Environ 106:289–301
Yang L, Han M, Zhou G, Li J (2007) The changes in water-use efficiency and stoma density of Leymus chinensis along northeast China transect. Acta Ecol Sinica 27:16–24