Physics-informed neural networks (PINNs) for fluid mechanics: a review

Shengze Cai1, Zhiping Mao2, Zhicheng Wang3, Minglang Yin4, George Em Karniadakis1
1Division of Applied Mathematics, Brown University, Providence, USA
2School of Mathematical Sciences, Xiamen University, Xiamen, China
3Laboratory of Ocean Energy Utilization of Ministry of Education, Dalian University of Technology, Dalian, China
4School of Engineering, Brown University, Providence, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

Karniadakis, G.E., Sherwin, S.: Spectral-hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)

Katz, A.J.: Meshless Methods for Computational Fluid Dynamics. Stanford University Stanford, Stanford (2009)

Liu, M., Liu, G.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

Beck, J.V., Blackwell, B., Clair Jr, C.R.S.: Inverse heat conduction: Ill-posed problems. James Beck (1985)

Jasak, H., Jemcov, A., Tukovic, Z., et al.: OpenFOAM: A C++ library for complex physics simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik Croatia (2007)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed learning machine (2021). US Patent 10,963,540

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput. 40, A172–A198 (2018)

Raissi, M., Wang, Z., Triantafyllou, M.S., et al.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)

Jin, X., Cai, S., Li, H., et al.: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 426, 109951 (2021)

Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020)

Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

Yin, M., Zheng, X., Humphrey, J.D., et al.: Non-invasive inference of thrombus material properties with physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 375, 113603 (2021)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28, 2042–2074 (2020)

Abadi, M., Barham, P., Chen, J., et al.: Tensorflow: a system for large-scale machine learning. In: 12th $$\{$$USENIX$$\}$$ symposium on operating systems design and implementation ($$\{$$OSDI$$\}$$ 16), pp. 265–283 (2016)

Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561 (2017)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part ii): data-driven discovery of nonlinear partial differential equations. arxiv. arXiv preprint arXiv:1711.10561 (2017)

Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: fractional physics-informed neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 (2019)

Fang, Z., Zhan, J.: A physics-informed neural network framework for PDEs on 3D surfaces: time independent problems. IEEE Access 8, 26328–26335 (2019)

Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J. Sci. Comput. 42, A639–A665 (2020)

Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 374, 113547 (2021)

Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020)

Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28, 2002–2041 (2020)

Shukla, K., Jagtap, A.D., Karniadakis, G.E.: Parallel physics-informed neural networks via domain decomposition. arXiv preprint arXiv:2104.10013 (2021)

Hennigh, O., Narasimhan, S., Nabian, M.A., et al.: NVIDIASimNet$$^\text{TM}$$: an AI-accelerated multi-physics simulationframeworkarxivhttp://arxiv.org/abs/2012.07938arXiv:2012.07938

Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 394, 136–152 (2019)

Zhang, D., Lu, L., Guo, L., et al.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 2019 (2019)

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., et al.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)

Sun, L., Wang, J.X.: Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data. Theor. Appl. Mech. Lett. 10, 161–169 (2020)

Yang, L., Meng, X., Karniadakis, G.E.: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913 (2021)

Meng, X., Karniadakis, G.E.: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems. J. Comput. Phys. 401, 109020 (2020)

Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2020)

Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536 (2020)

Lu, L., Pestourie, R., Yao, W., et al.: Physics-informed neural networks with hard constraints for inverse design. arXiv preprint arXiv:2102.04626 (2021)

Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428, 110079 (2021)

Mishra, S., Molinaro, R.: Estimates on the generalization error of physics informed neural networks (PINNs) for approximating PDEs. arXiv preprint arXiv:2006.16144 (2020)

Mishra, S., Molinaro, R.: Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs. arXiv preprint arXiv:2007.01138 (2020)

Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: A neural tangent kernel perspective. arXiv preprint arXiv:2007.14527 (2020)

Kissas, G., Yang, Y., Hwuang, E., et al.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

Yang, X., Zafar, S., Wang, J.X., et al.: Predictive large-eddy-simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4, 034602 (2019)

Lou, Q., Meng, X., Karniadakis, G.E.: Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. arXiv preprint arXiv:2010.09147 (2020)

Cai, S., Wang, Z., Wang, S., et al.: Physics-informed neural networks for heat transfer problems. J. Heat Transf. 143, 060801 (2021)

Cai, S., Wang, Z., Fuest, F., et al.: Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. J. Fluid Mech. 915 (2021)

Wang, S., Perdikaris, P.: Deep learning of free boundary and Stefan problems. J. Comput. Phys. 428, 109914 (2021)

Lucor, D., Agrawal, A., Sergent, A.: Physics-aware deep neural networks for surrogate modeling of turbulent natural convection. arXiv preprint arXiv:2103.03565 (2021)

Mahmoudabadbozchelou, M., Caggioni, M., Shahsavari, S., et al.: Data-driven physics-informed constitutive metamodeling of complex fluids: a multifidelity neural network (mfnn) framework. J. Rheol. 65, 179–198 (2021)

Arzani, A., Wang, J.X., D’Souza, R.M.: Uncovering near-wall blood flow from sparse data with physics-informed neural networks. arXiv preprint arXiv:2104.08249 (2021)

Cai, S., Li, H., Zheng, F., et al.: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc. Natl. Acad. Sci. 118(13) (2021)

Wang, R., Kashinath, K., Mustafa, M., et al.: Towards physics-informed deep learning for turbulent flow prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466 (2020)

Goswami, S., Anitescu, C., Chakraborty, S., et al.: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor. Appl. Fract. Mech. 106, 102447 (2020)

Zhang, E., Yin, M., Karniadakis, G.E.: Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging. arXiv preprint arXiv:2009.04525 (2020)

Zheng, X., Yazdani, A., Li, H., et al.: A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol. 16, e1007709 (2020)

Xu, Z., Chen, N., Kamocka, M.M., et al.: A multiscale model of thrombus development. J. R. Soc. Interface 5, 705–722 (2008)

Yazdani, A., Li, H., Humphrey, J.D., et al.: A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 13, e1005291 (2017)

Fan, D., Yang, L., Wang, Z., et al.: Reinforcement learning for bluff body active flow control in experiments and simulations. Proc. Natl. Acad. Sci. 117, 26091–26098 (2020)