Physics and Applications of Microfluidics in Biology

Annual Review of Biomedical Engineering - Tập 4 Số 1 - Trang 261-286 - 2002
David J. Beebe1, Glennys Mensing2, Gregg B. Walker2
1Department of Biomedical Engineering, University of Wisconsin, Madison 53706, USA. [email protected]
2Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706;

Tóm tắt

▪ Abstract  Fluid flow at the microscale exhibits unique phenomena that can be leveraged to fabricate devices and components capable of performing functions useful for biological studies. The physics of importance to microfluidics are reviewed. Common methods of fabricating microfluidic devices and systems are described. Components, including valves, mixers, and pumps, capable of controlling fluid flow by utilizing the physics of the microscale are presented. Techniques for sensing flow characteristics are described and examples of devices and systems that perform bioanalysis are presented. The focus of this review is microscale phenomena and the use of the physics of the scale to create devices and systems that provide functionality useful to the life sciences.

Từ khóa


Tài liệu tham khảo

Figeys D, 2000, Anal. Chem., 72, 330, 10.1021/ac002800y

10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO;2-7

10.1002/1522-2683(200102)22:4<629::AID-ELPS629>3.0.CO;2-S

10.1088/0960-1317/3/4/002

10.1063/1.1387591

10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.3.CO;2-Z

10.1007/s002160051548

10.1146/annurev.fluid.30.1.579

Madou M, 1997, Fundamentals of Microfabrication.

Kovacs G, 1998, Micromachined Transducers Sourcebook.

10.1007/978-94-010-1015-3

10.1016/S0006-3495(96)79538-3

10.1119/1.10903

Sharp K, Adrian R, Santiago J, Molho J. 2002. Liquid flows in microchannels. See Ref.170, pp. 6-1–38

White F, 1991, Viscous Fluid Flow.

10.1063/1.126351

10.1021/ac990504j

10.1016/S0924-4247(97)80219-1

10.1038/88135

10.1021/ac001132d

10.1021/la000600b

10.1021/ac990576a

10.1109/84.846699

10.1088/0960-1317/4/4/010

10.1016/S0021-9673(99)00774-8

Vogel S, 1998, Cats' Paws and Catapults: Mechanical Worlds of Nature and People.

10.1126/science.291.5506.1023

10.1063/1.1308534

10.1126/science.291.5502.277

10.1109/84.896767

Madou M. 2002. MEMS fabrication. See Ref.171, pp. 16-1–183

Bernstein G, Goodson H, Snier G. 2002. Fabrication technologies for nanoelectromechanical systems. See Ref.171, pp. 36-1–24

10.1063/1.1663087

Masuda S, Washizu M, Nanba T. 1987. Novel methods of cell fusion and handling using fluid integrating circuit.Conf. Rec. Electrostatics '87, Oxford, pp. 69–74

10.1109/28.31255

10.1146/annurev.matsci.28.1.153

10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.3.CO;2-3

10.1021/ac980656z

10.1146/annurev.bioeng.3.1.335

10.1109/84.825780

10.1126/science.290.5496.1536

10.1021/ac9912294

10.1007/s005420050112

10.1021/ac970558y

Boone T, Fan Z, Gibbons I, Ricco A, Sassi A, et al. 2001. Disposable plastic microfluidic arrays for applications in biotechnology.Int. Conf. on Solid-State Sensors Actuators (Transducers),11th, Munich, pp. 1146–49

10.1002/(SICI)1520-667X(1996)8:7<479::AID-MCS4>3.3.CO;2-7

10.1073/pnas.250273097

10.1039/b109344d

10.1063/1.1367010

Beebe DB, Mensing G, Moorthy J, Khoury C, Pearce T. 2001. Alternative approaches to microfluidic systems design, construction, and operation. See Ref.11, pp. 453–55

10.1002/1099-1395(200012)13:12<837::AID-POC315>3.0.CO;2-5

10.1088/0960-1317/11/3/316

Choi J, Kim S, Trichur R, Cho H, Puntambekar A, et al. 2001. A plastic micro injection molding technique using replaceable mold-disks for disposable microfluidic systems and biochips. See Ref.11, pp. 411–12

10.1021/ac961038q

10.1088/0960-1317/8/2/004

10.1016/S0013-4686(97)00193-X

10.1109/84.846698

10.1126/science.288.5463.113

Rehm J, Shepodd T, Hasselbrink E. 2001. Mobile flow control elements for high-pressure micro-analytical systems fabricated using in-situ polymerization. See Ref.11, pp. 227–29

10.1109/84.982862

10.1038/35007047

10.1109/84.809053

Anderson RC, Bogdan GJ, Dawes TD, Winkler J, Roy K. 1997. Microfluidic biochemical analysis system.Transducers 97—Int. Conf. Solid-State Sensors Actuators, Chicago, pp. 477–80

10.1021/ac971125y

10.1016/S0003-2670(00)01256-3

Ahn C, Puntambekar A, Lee S, Cho H, Hong C. 2000. Structurally programmable microfluidic systems. See Ref.172, pp. 205–8

Tiensuu A, Ohman O, Lundbladh L, Larsson O. 2000. Hydrophobic valves by ink-jet printing on plastic CD's with integrated microfluidics. See Ref.172, pp. 575–78

Zeng J, Banerjee D, Deshpande M, Gilbert JR, Duffy D, Kellog G. 2000. Design analysis of capillary burst valves in centrifugal microfluids. See Ref.172, pp. 579–82

10.1039/a902237f

10.1088/0960-1317/8/2/020

10.1039/b104391a

10.1088/0960-1317/6/1/023

10.1039/b103848f

10.1021/ac9708250

Bohm S, Greiner K, Schlautmann S, de Vries S, van den Berg A. 2001. A rapid vortex micromixer for studying high speed chemical reactions. See Ref.11, pp. 25–27

Hong C, Choi J, Ahn C. 2001. A novel in-plane passive micromixer using coanda effect. See Ref.11, pp. 31–33

10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.3.CO;2-P

10.1021/ac0155411

Choi J, Hong C, Ahn C. 2001. An electrokinetic active micromixer. See Ref.11, pp. 621–22

Evans J, Liepmann D, Pisano A. 1997.Planar laminar mixer. Presented at Annu. Workshop Micro Electro Mech. Syst., 10th, Nagoya

Lu L, Ryu K, Liu C. 2001. A novel microstirrer and arrays for microfluidic mixing. See Ref.11, pp. 28–30

10.1088/0960-1317/9/2/312

10.1021/ac0124585

10.1109/84.679390

10.1016/S0925-4005(00)00644-4

Jang L, 1999, ASME Int. Mech. Eng. Congr. Expo., 503

10.1016/S0924-4247(00)00519-7

Dopper J, Clemens M, Ehrfeld W, Kamper K, Lehr H. 1996. Development of low-cost injection moulded micropumps.Proc. Int. Conf. New Actuators, 5th, Bremen, Germany, pp. 37–40

10.1016/S0924-4247(99)00192-2

10.1016/S0924-4247(00)00559-8

10.1116/1.1350840

Lemoff A, Lee A, Miles R, McConaghy C. 1999. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system.Int. Conf. Solid-State Sensors Actuators, 10th, Sendai, Jpn, pp. 1126–29

10.1109/84.925748

Perez-Castillejos R, Esteve J, Acero M, Plaza J. 2001. Ferrofluids for disposable microfluidic systems. See Ref.11, pp. 492–94

10.1063/1.1398319

10.1088/0960-1317/11/3/317

Su YC, 2001, IEEE MEMS Conf., Interlaken, Switz.,, 393

Effenhauser C, Harttig H, Kramer P. 2001. A disposable micropump concept for small and constant flow rates. See Ref.11, pp. 397–98

Chang W, Trebotich D, Lee LP, Liepmann D. 2000. Blood flow in simple microchannels. See Ref.169, pp. 311–15

10.1021/ac00168a040

Ross D, Caitan M, Locascio L. 2001. Temperature measurement and control in microfluidic systems. See Ref.11, pp. 239–41

Slyadnev M, Tanaka Y, Tokeshi M, Kitamori T. 2001. Non-contact temperature measurement inside microchannel. See Ref.11, pp. 361–62

Culbertson C, Alarie JP, McClain M, Jacobson S, Ramsey JM. 2001. Rapid cellular assays on microfabricated fluidic devices. See Ref.11, pp. 285–86

10.1007/s003480050235

Bauer J, Beebe D. 2000. A method for measuring deformation rates in hydrogel structures: multi-plane imaging and measurement limitations.2000 Int. Mech. Eng. Congr. Expo., Orlando, pp. 13–17

10.1021/ac010421e

10.1039/a908883k

10.1021/ac000855u

Kim DJ, Cho WH, Ro KW, Hahn JH. 2001. Microchip-based simultaneous on-line monitoring of CR(iii) and CR(vi) using highly efficient chemiluminescence detection. See Ref.11, pp. 525–26

10.1023/A:1009944832192

10.1038/nm1095-1093

Polla D, Krulevitch P, Wang A, Smith G, Diaz J, et al. 2000. MEMS-based diagnostic microsystems. See Ref.170, pp. 41–44

10.1093/nar/24.2.375

10.1093/nar/24.2.380

10.1093/nar/25.15.3164

10.1126/science.280.5366.1046

10.1006/abio.2000.4974

10.1006/abio.1997.2530

Hong J, Fujii T, Seki M, Yamamoto T, Endo I. 2000. PDMS (polydimethylsiloxane)-glass hybrid microchip for gene amplification. See Ref.170, pp. 407–10

10.1021/ac951230c

10.1101/gr.155301

10.1021/ac970642d

10.1021/ac960718q

10.1126/science.282.5388.484

Anderson R, 2000, Nucleic Acids Res., 28, i, 10.1093/nar/28.12.e60

10.1101/gr.157400

10.1101/gr.7.3.189

10.1016/S0958-1669(00)00166-X

10.1016/S0167-7799(99)01310-4

10.1016/S0165-9936(00)00011-X

10.1016/S0925-4005(97)00228-1

10.1021/ac970192p

10.1006/abio.1999.4204

10.1021/ac990591f

10.1021/ac990682c

Schilling E, Kamholz A, Yager P. 2001. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. See Ref.11, pp. 265–67

Sever J, 1962, J. Immunol., 88, 320, 10.4049/jimmunol.88.3.320

10.1021/ac9508311

10.1021/ac951190c

10.1021/ac9606620

10.1016/S0378-4347(97)00256-9

10.1021/ac0008845

10.1021/ac000997o

10.1016/S0925-4005(00)00640-7

10.1021/ac0015366

10.1007/s002160000660

10.1021/ac991151r

10.1021/ac0007938

Chiem N, 1998, Clin. Chem., 44, 591, 10.1093/clinchem/44.3.591

10.1103/PhysRevLett.79.2149

10.1021/ac971063b

10.1021/ac9606564

Sobek D, Senturia S, Gray M. 1994. Microfabricated fused silica flow chambers for flow cytometry. InTech. Dig. Solid-State Sensor Actuator Worksh., Hilton Head Island, SC, pp. 260–63

10.1038/15095

10.1021/ac990372u

10.1109/84.749402

10.1073/pnas.200361297

10.1063/1.1347020

Beebe D. 2000. Microfabricated fluidic devices for single cell handling and analysis. InEmerging Tools for Single Cell Analysis: Advances in Optical Measurement Technologies, ed. G Durack, J Robinson. New York: Wiley

10.1016/S0958-1669(99)00051-8

10.1114/1.225

10.1016/S0925-4005(96)01906-5

10.1016/S0925-4005(00)00705-X

10.1016/S0956-5663(01)00168-3

10.1146/annurev.bioeng.2.1.227

10.1038/35082637

10.1039/b103931h

Raty S, 2001, Theriogenology, 55, 241

Walker G, 2001, Biomed. Microdev.

Dittmar A, Beebe D, eds. 2000.Annu. IEEE EMBS Conf. Microtechnology Med. Biol., 1st, Lyon, Fr.

Gad-el-Hak M, 2002, The MEMS Handbook.

10.1007/978-94-017-2264-3

Tracy M, 2001, Proc. IEEE–EMBS Conf. Microtech. Med. Bio., 1, 62

10.1007/s003480050366