Kịch bản dựa trên vật lý về chu kỳ động đất trên hệ thống đứt gãy Ventura ở California: Ảnh hưởng của ma sát biến đổi và hình học đứt gãy

Geofisica pura e applicata - Tập 176 - Trang 3993-4007 - 2019
Su Qing Miranda Ong1, Sylvain Barbot1,2,3, Judith Hubbard1,2
1Asian School of Environment, Singapore, Singapore
2Earth Observatory of Singapore, Singapore, Singapore
3Department of Earth Sciences, University of Southern California, Los Angeles, USA

Tóm tắt

Hệ thống đứt gãy Ventura ở California có khả năng tạo ra các trận động đất có độ lớn lớn. Các nghiên cứu địa chất cho thấy rằng hình học của đứt gãy rất phức tạp, bao gồm nhiều đoạn với các độ nghiêng khác nhau: các đoạn đứt gãy đẩy có độ nghiêng từ 30° đến 50° được liên kết với các đứt gãy song song với lớp đá có độ nghiêng < 10°. Các loại đứt gãy nghiêng nhẹ này hình thành do những điểm yếu đã có sẵn trong vỏ trái đất, do đó có các thông số ma sát khác nhau so với các đoạn đứt gãy đẩy; các đứt gãy cũng chịu các ứng suất khác nhau do cách thức ứng suất được phân giải lên các mặt phẳng đứt gãy. Ở đây, chúng tôi sử dụng mô hình đứt gãy hai chiều để đánh giá cách mà hình học và các tính chất ma sát của hệ thống đoạn đứt gãy/đứt gãy có thể ảnh hưởng đến chu kỳ địa chấn. Chúng tôi kiểm tra các đứt gãy tăng tốc độ, giảm tốc độ, và đứt gãy ổn định có điều kiện, đồng thời khám phá cách mà góc nghiêng của đứt gãy thay đổi hành vi động đất. Một đứt gãy tăng tốc độ không thể tái hiện các đứt gãy động đất xuyên qua được mà đã được suy luận cho hệ thống đứt gãy Ventura. Vì vậy, chúng tôi đề xuất rằng đứt gãy này và các đứt gãy khác có thể được mô hình hóa tốt hơn bằng cách sử dụng phản ứng giảm tốc độ hoặc ổn định có điều kiện. Kết quả của chúng tôi cho thấy rằng những biến thể nhỏ trong hình học đứt gãy tạo ra các lượng trượt và khoảng thời gian tái diễn chỉ khác nhau 10–20%, nhưng không thay đổi quan trọng các loại động đất và trượt giữa các trận. Chúng tôi kết luận rằng các ràng buộc địa chất về hình học đứt gãy thường đủ để tạo ra các chuỗi động đất mô hình hóa thống kê nhất quán với hồ sơ địa chấn cổ. Tuy nhiên, cả các thông số ma sát dọc theo đứt gãy và ứng suất bình thường hiệu quả ảnh hưởng đáng kể đến các mẫu đứt gãy động đất. Cần có nhiều nghiên cứu hơn để ràng buộc đầy đủ những đại lượng này để các mô hình đứt gãy động đất hoạt động như những dự đoán hiệu quả về hành vi đứt gãy.

Từ khóa

#động đất #đứt gãy Ventura #ma sát #hình học đứt gãy #chu kỳ địa chấn

Tài liệu tham khảo

Ampuero, J. P., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults—aging and slip laws. Journal of Geophysical Research Solid Earth, 113, B1. Anderson, G., Aagaard, B., & Hudnut, K. (2003). Fault interactions and large complex earthquakes in the Los Angeles area. Science, 302(5652), 1946–1949. Ariyoshi, K., Matsuzawa, T., Yabe, Y., Kato, N., Hino, R., Hasegawa, A., et al. (2009). Character of slip and stress due to interaction between fault segments along the dip direction of a subduction zone. Journal of Geodynamics, 48(2), 55–67. Bai, L., Liu, H., Ritsema, J., Mori, J., Zhang, T., Ishikawa, Y., et al. (2016). Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. Geophysical Research Letters, 43(2), 637–642. Barbot, S. D. (2018). Asthenosphere flow modulated by megathrust earthquake cycles. Geophysical Research Letters, 2015, 45. Barbot, S., Lapusta, N., & Avouac, J. P. (2012). Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle. Science, 336(6082), 707–710. Ben-Zion, Y., & Rice, J. R. (1997). Dynamic simulations of slip on a smooth fault in an elastic solid. Journal of Geophysical Research Solid Earth, 102(B8), 17771–17784. Biasi, G. P., & Weldon, R. J. (2006). Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement. Bulletin of the Seismological Society of America, 96(5), 1612–1623. Biemiller, J., & Lavier, L. (2017). Earthquake supercycles as part of a spectrum of normal fault slip styles. Journal of Geophysical Research Solid Earth, 122(4), 3221–3240. Bilham, R., Gaur, V. K., & Molnar, P. (2001). Himalayan seismic hazard. Science, 293(5534), 1442–1444. Bollinger, L., Tapponnier, P., Sapkota, S. N., & Klinger, Y. (2016). Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets and Space, 68(1), 12. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. Cubas, N., Lapusta, N., Avouac, J. P., & Perfettini, H. (2015). Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: Comparison with observations and implications for fault friction. Earth and Planetary Science Letters, 419, 187–198. Dahlen, F. A. (1990). Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18(1), 55–99. Dahlen, F. A., Suppe, J., & Davis, D. (1984). Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. Journal of Geophysical Research Solid Earth, 89(B12), 10087–10101. Daout, S., Barbot, S., Peltzer, G., Doin, M. P., Liu, Z., & Jolivet, R. (2016). Constraining the kinematics of metropolitan Los Angeles faults with a slip-partitioning model. Geophysical Research Letters, 43, 21. Daub, E. G., & Carlson, J. M. (2008). A constitutive model for fault gouge deformation in dynamic rupture simulations. Journal of Geophysical Research Solid Earth, 113, B12. Davis, T. L., & Namson, J. S. (1994). A balanced cross-section of the 1994 Northridge earthquake, southern California. Nature, 372(6502), 167. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research Solid Earth, 88(B2), 1153–1172. Diao, F., Walter, T. R., Motagh, M., Prats-Iraola, P., Wang, R., & Samsonov, S. V. (2015). The 2015 Gorkha earthquake investigated from radar satellites: Slip and stress modeling along the MHT. Frontiers in Earth Science, 3, 65. Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick–slip. Pure and Applied Geophysics, 116(4–5), 790–806. Dieterich, J. H. (2007). Applications of rate-and state-dependent friction to models of fault slip and earthquake occurrence-4.04. Dolan, J. F., & Rockwell, T. K. (2001). Paleoseismologic evidence for a very large (Mw > 7), post-AD 1660 surface rupture on the Eastern San Cayetano Fault, Ventura County, California: Was this the elusive source of the damaging 21 December 1812 Earthquake? Bulletin of the Seismological Society of America, 91(6), 1417–1432. Dominguez, S., Avouac, J. P., & Michel, R. (2003). Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan. Journal of Geophysical Research Solid Earth, 108, B2. Duan, B., Liu, D., & Yin, A. (2017). Seismic shaking in the North China Basin expected from ruptures of a possible seismic gap. Geophysical Research Letters, 44(10), 4855–4862. Elliott, J. R., Jolivet, R., González, P. J., Avouac, J. P., Hollingsworth, J., Searle, M. P., et al. (2016). Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9(2), 174. Feng, G., Li, Z., Shan, X., Zhang, L., Zhang, G., & Zhu, J. (2015). Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data. Geophysical journal international, 203(2), 896–900. Gabriel, A. A., Ampuero, J. P., Dalguer, L. A., & Mai, P. M. (2012). The transition of dynamic rupture styles in elastic media under velocity-weakening friction. Journal of Geophysical Research Solid Earth, 117, B9. Goswami, A., & Barbot, S. (2018). Slow-slip events in semi-brittle serpentinite fault zones. Scientific Reports, 8(1), 6181. Hauksson, E., Jones, L. M., & Hutton, K. (1995). The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects. Journal of Geophysical Research Solid Earth, 100(B7), 12335–12355. Hori, T., & Miyazaki, S. I. (2011). A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7–8 earthquakes surrounded by aseismic sliding. Earth Planets and Space, 63(7), 48. Hubbard, J., Almeida, R., Foster, A., Sapkota, S. N., Bürgi, P., & Tapponnier, P. (2016). Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology, 44(8), 639–642. Hubbard, J., Barbot, S., Hill, E. M., & Tapponnier, P. (2015). Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Science Reviews, 141, 45–55. Hubbard, J., Shaw, J. H., Dolan, J., Pratt, T. L., McAuliffe, L., & Rockwell, T. K. (2014). Structure and seismic hazard of the Ventura Avenue Anticline and Ventura Fault, California: Prospect for large, multisegment ruptures in the Western Transverse Ranges. Bulletin of the Seismological Society of America, 104(3), 1070. https://doi.org/10.1785/0120130125. Ikari, M. J., Carpenter, B. M., & Marone, C. (2016). A microphysical interpretation of rate-and state-dependent friction for fault gouge. Geochemistry Geophysics Geosystems, 17(5), 1660–1677. Ikari, M. J., Marone, C., & Saffer, D. M. (2011). On the relation between fault strength and frictional stability. Geology, 39(1), 83–86. Johnson, K. M., Hsu, Y. J., Segall, P., & Yu, S. B. (2001). Fault geometry and slip distribution of the 1999 Chi–Chi, Taiwan earthquake imaged from inversion of GPS data. Geophysical Research Letters, 28(11), 2285–2288. Kaneko, Y., Avouac, J. P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3(5), 363–369. Kato, N. (2003). Repeating slip events at a circular asperity: Numerical simulation with a rate-and state-dependent friction law. Bulletin of the Earthquake Research Institute University of Tokyo, 78, 151–166. Kato, N. (2014). Deterministic chaos in a simulated sequence of slip events on a single isolated asperity. Geophysical Journal International, 198(2), 727–736. Lambert, V., & Barbot, S. (2016). Contribution of viscoelastic flow in earthquake cycles within the lithosphere–asthenosphere system. Geophysical Research Letters, 43, 19. Lapusta, N., & Barbot, S. (2012). Models of earthquakes and aseismic slip based on laboratory-derived rate-and-state friction laws. The Mechanics of Faulting From Laboratory to Real Earthquakes, 2012, 153–207. Lapusta, N., & Rice, J. R. (2003). Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Journal of Geophysical Research Solid Earth, 108, B4. Lapusta, N., Rice, J. R., Ben-Zion, Y., & Zheng, G. (2000). Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate-and state-dependent friction. Journal of Geophysical Research Solid Earth, 105(B10), 23765–23789. Lavé, J., & Burbank, D. (2004). Denudation processes and rates in the Transverse Ranges, southern California: Erosional response of a transitional landscape to external and anthropogenic forcing. Journal of Geophysical Research Earth Surface, 109, F1. Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M., et al. (2005). Evidence for a great Medieval earthquake (~ 1100 AD) in the central Himalayas, Nepal. Science, 307(5713), 1302–1305. Lee, S. J., & Ma, K. F. (2000). Rupture process of the 1999 Chi–Chi, Taiwan, earthquake from the inversion of teleseismic data. Terrestrial Atmospheric and Oceanic Sciences, 11(3), 591–608. Li, D., & Liu, Y. (2016). Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone. Journal of Geophysical Research Solid Earth, 121(9), 6828–6845. Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research Solid Earth, 110, B8. Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research Solid Earth, 112, B9. Liu, Y., & Rice, J. R. (2009). Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. Journal of Geophysical Research Solid Earth, 114, B9. Marone, C. J., Scholtz, C. H., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research Solid Earth, 96(B5), 8441–8452. Marshall, S. T., Funning, G. J., & Owen, S. E. (2013). Fault slip rates and interseismic deformation in the western Transverse Ranges, California. Journal of Geophysical Research Solid Earth, 118(8), 4511–4534. McAuliffe, L. J., Dolan, J. F., Rhodes, E. J., Hubbard, J., Shaw, J. H., & Pratt, T. L. (2015). Paleoseismologic evidence for large-magnitude (Mw 7.5–8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California. Geosphere, 11(5), 1629–1650. https://doi.org/10.1130/ges01123.1. McPhillips, D., & Scharer, K. M. (2018). Quantifying uncertainty in cumulative surface slip along the Cucamonga Fault, a crustal thrust fault in southern California. Journal of Geophysical Research Solid Earth, 123(10), 9063–9083. Mele Veedu, D., & Barbot, S. (2016, April). The Parkfield Tremors: Slow and fast ruptures on the same asperity. In EGU General Assembly Conference Abstracts (vol. 18, p. 16555). Michel, S., Avouac, J. P., Lapusta, N., & Jiang, J. (2017). Pulse-like partial ruptures and high-frequency radiation at creeping-locked transition during megathrust earthquakes. Geophysical Research Letters, 44(16), 8345–8351. Noda, H., & Hori, T. (2014). Under what circumstances does a seismogenic patch produce aseismic transients in the later interseismic period? Geophysical Research Letters, 41(21), 7477–7484. Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433), 518–521. Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey, E. O., et al. (2016). The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology, 44(10), 875–878. Rockwell, T. K., Clark, K., Gamble, L., Oskin, M. E., Haaker, E. C., & Kennedy, G. L. (2016). Large Transverse Range earthquakes cause coastal upheaval near Ventura, southern California. Bulletin of the Seismological Society of America, 106(6), 2706–2720. Rockwell, T. K., Keller, E. A., Clark, M. N., & Johnson, D. L. (1984). Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95(12), 1466–1474. Rollins, C., Avouac, J. P., Landry, W., Argus, D. F., & Barbot, S. (2018). Interseismic strain accumulation on faults beneath Los Angeles, California. Journal of Geophysical Research Solid Earth, 123(8), 7126–7150. Romanet, P., Bhat, H. S., Jolivet, R., & Madariaga, R. (2018). Fast and slow slip events emerge due to fault geometrical complexity. Geophysical Research Letters, 45(10), 4809–4819. Rousset, B., Barbot, S., Avouac, J. P., & Hsu, Y. J. (2012). Postseismic deformation following the 1999 Chi–Chi earthquake, Taiwan: Implication for lower-crust rheology. Journal of Geophysical Research Solid Earth, 117, B12. Rubin, C. M., Lindvall, S. C., & Rockwell, T. K. (1998). Evidence for large earthquakes in metropolitan Los Angeles. Science, 281(5375), 398–402. Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research Solid Earth, 88(B12), 10359–10370. Ryan, K. J., Geist, E. L., Barall, M., & Oglesby, D. D. (2015). Dynamic models of an earthquake and tsunami offshore Ventura, California. Geophysical Research Letters, 42(16), 6599–6606. Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., & Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 6(1), 71–76. Sarna-Wojcicki, A. M., Williams, K. M., & Yerkes, R. F. (1976). Geology of the Ventura Fault, Ventura County, California (No. 781). Sarna-Wojcicki, A. M., & Yerkes, R. F. (1982). Comment on Article by RS Yeats on “Low-Shake Faults of the Ventura Basin, California”. Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37–42. Segall, P. (2012). Understanding earthquakes. Science, 336(6082), 676–677. Shaw, J. H., & Shearer, P. M. (1999). An elusive blind-thrust fault beneath metropolitan Los Angeles. Science, 283(5407), 1516–1518. Shibazaki, B., Matsuzawa, T., Tsutsumi, A., Ujiie, K., Hasegawa, A., & Ito, Y. (2011). 3D modeling of the cycle of a great Tohoku-Oki earthquake, considering frictional behavior at low to high slip velocities. Geophysical Research Letters, 38, 21. Sreejith, K. M., Sunil, P. S., Agrawal, R., Saji, A. P., Ramesh, D. S., & Rajawat, A. S. (2016). Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophysical Research Letters, 43(7), 3160–3168. Suppe, J. (2007). Absolute fault and crustal strength from wedge tapers. Geology, 35(12), 1127–1130. Thomas, M. Y., Avouac, J. P., & Lapusta, N. (2017). Rate-and-state friction properties of the Longitudinal Valley Fault from kinematic and dynamic modeling of seismic and aseismic slip. Journal of Geophysical Research Solid Earth, 122(4), 3115–3137. Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research Solid Earth, 91(B9), 9452–9472. Wang, K., & Fialko, Y. (2015). Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophysical Research Letters, 42(18), 7452–7458. Wesnousky, S. G. (2006). Predicting the endpoints of earthquake ruptures. Nature, 444(7117), 358. Wu, Y., & Chen, X. (2014). The scale-dependent slip pattern for a uniform fault model obeying the rate-and state-dependent friction law. Journal of Geophysical Research Solid Earth, 119(6), 4890–4906. Yu, S. B., Kuo, L. C., Hsu, Y. J., Su, H. H., Liu, C. C., Hou, C. S., et al. (2001). Preseismic deformation and coseismic displacements associated with the 1999 Chi–Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 995–1012. Yu, H., Liu, Y., Yang, H., & Ning, J. (2018). Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry. Tectonophysics, 733, 73–84. Yue, L. F., Suppe, J., & Hung, J. H. (2005). Structural geology of a classic thrust belt earthquake: The 1999 Chi-Chi earthquake Taiwan (Mw = 7.6). Journal of Structural Geology, 27(11), 2058–2083. Zhao, W. L., Davis, D. M., Dahlen, F. A., & Suppe, J. (1986). Origin of convex accretionary wedges: Evidence from Barbados. Journal of Geophysical Research Solid Earth, 91(B10), 10246–10258.