Physicochemical properties of solutions and ultrathin films of triple-decker gadolinium tetra-15-crown-5-phthalocyaninate

Pleiades Publishing Ltd - Tập 47 - Trang 447-456 - 2011
S. L. Selektor1, L. S. Sheinina1, A. V. Shokurov1, O. A. Raitman1, V. V. Arslanov1, L. A. Lapkina2, Yu. G. Gorbunova1,2, A. Yu. Tsivadze1,2
1Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The ability of the triple-decker gadolinium complex with tetra-15-crown-5-phthalocyanine Gd2(R4Pc)3, (R = 15-crown-5) (1) to form monolayers and Langmuir-Blodgett films (LBFs) was studied for the first time. The charge characteristics of molecules of a triple-decker phthalocyaninate in monolayer, as well as their orientation and adhesion to the water subphase, were controlled by changing the surface pressure, pH, and subphase composition (aqueous solutions containing triethylenetetramine (TETA) and metal cations). It was shown that the presence of Na+ and protonated TETA aminogroups in resulted in an increasing limiting monolayer area and significant decreasing of the monolayer liquid state region. It is proven that the observed effects are caused by the conformational and charge transitions of peripheral crown ethers induced by their interaction with cations. A comparison of the differential reflectance spectra of the complex monolayer on the deionized water surface with UV-Vis absorption spectra of three-layer Gd2(R4Pc)3 LBF and complex solution in chloroform shows that partial complex oxidation and intensive stacking formation occurs already at the stage of monolayer formation on the subphase surface. Electrochemical studies of three-layer LBFs performed at the indium-tin-oxide electrodes (ITO-electrodes) using cyclic voltammetry (CV) showed three reversible redox waves in the potential range −200 to +1100 mV (vs. Ag+/AgCl). All registered peaks remain the same position and intensity upon multiple cycling. plasmon resonance (SPR) measurements allow to register three stable redox states of studied LBF upon applying the external potential. Such behavior shows the possibility to use multistep redox transformations of studied complex LBF for developing of stable and reproducible switchable optoelectronic systems.

Tài liệu tham khảo

Leznoff, C.C., Lever, A.B.P., Phthalocyanines. Properties and Application, Leznoff, C.C. and Lever, A.B.P., Eds., New York: VCH Publ. Inc., 1989, 1982, 1993, 1996, vols. 1–4. The Porphyrin Handbook, Kadish, K.M., Smith, K.M., and Guilard, R., Eds., San Diego: Academic Press, 2000. Moskalev, P.N., Koord. Khim., 1990, vol. 16, no. 2, p. 147. Jiang, J., Kasuga, K., and Arnold, D.P., in Supramolecular Photo-sensitive, Electro-active Materials, Nalwa, H.S., Ed., New York: Academic Press, 2001, p. 113. Selector, S.L., Arslanov, V.V., Gorbunova, Y.G., et al., J. Porphyrins and Phthalocyanines, 2008, vol. 12, p. 1154. Ng, D.K.P. and Jiang, J., Chem. Soc. Rev., 1997, vol. 26, p. 433. Bian, Y., Jiang, J., Tao, Y., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 12257. Gorbunova, Yu.G., Lapkina, L.A., and Tsivadze, A.Yu., J. Coord. Chem., 2003, vol. 56, no. 14, p. 1223. Gorbunova, Yu.G., Lapkina, L.A., Martynov, A.G., et al., Koord. Khim., 2004, vol. 30, p. 263. Martynov, A.G., Biryukova, I.V., Gorbunova, Yu.G., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2004, vol. 49, no. 3, p. 407 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 49, no. 3, p. 358]. Lapkina, L.A., Gorbunova, Yu.G., Larchenko, V.E., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2003, vol. 48, no. 7, p. 1164 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 48, no. 7, p. 1053]. Toupance, T., Ahsen, V., Simon, J., J. Am. Chem. Soc., 1994, vol. 116, p. 5352. Stites, J.G., McCarty, C.N., and Quill, L.L., J. Am. Chem. Soc., 1948, vol. 70, no. 9, p. 3142. Gorbunova, Yu.G., Komarova, O.Yu., Demin, S.V., et al., Koord. Khim., 1997, vol. 23, no. 7, p. 553. Ahsen, V., Yilmazer, E., Ertas, M., and Bekaroglu, O., J. Chem. Soc., Dalton Trans., 1988, no. 2, p. 40. Grüniger, H., Möbius, D., and Meyer, H., J. Chem. Phys., 1983, vol. 79, no. 8, p. 3701. Orrit, M., Möbius, D., Meyer, H., and Lehmann, U., J. Chem. Phys., 1986, vol. 85, p. 4966. Lapkina, L.A., Niskanen, E., Rönkömäki, H., et al., J. Porphyrins and Phthalocyanines, 2000, vol. 4, p. 587. Nefedova, I.V., Gorbunova, Yu.G., Sakharov, S.G., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2005, vol. 50, no. 2, p. 204 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 50, no. 2, p. 165]. Zhukov, J.V., Lapkina, L.A., Gorbunova, Y.G. et al., J. Porphyrins and Phalocyanines, 2005, vol. 9, p. 1. Ishikawa, N., Okubo, T., and Kaizu, Y., Inorg. Chem., 1999, vol. 38, p. 3173. Lapkina, L.A., Sakharov, S.G., Larchenko, V.E., et al., Zh. Neorg. Khim., 2007, vol. 52, no. 4, p. 601 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 52, no. 4, p. 543]. Tsivadze, A.Yu., Usp. Khim., 2004, vol. 73, no. 1, p. 6. McRae, E. and Kasha, M., J. Phys. Chem., 1958, vol. 28, p. 721. Li, R., Ma, P., Dong, Sh., et al., Inorg. Chem., 2007, vol. 46, no. 26, p. 11397. Arslanov, V.V., Gorbunova, Yu.G., Selector, S.L., et. al., Izvestiya AN. Ser. khimich., 2004, no. 11, p. 2426. Smolenyak, P.E., Osburn, E.J., Chen, S.-Y., et al., Langmuir, 1997, vol. 13, p. 6568.