Physicochemical Characterization of α-Chitin Whiskers-Reinforced Chitosan Nanocomposite Films

Polymer Science, Series A - Tập 64 - Trang 487-492 - 2022
E. M. Dahmane1,2, M. Taourirte2, N. Eladlani2, M. Y. Amarouch1, D. Mazouzi1, M. Rhazi3
1R. N. E Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohamed Ben Abdellah, Taza Gare, Morocco
2Laboratoire de Recherche en Développement Durable et Santé, Departement of Chemical Sciences, Sciences and Techniques Faculty-Guéliz, University Cadi Ayyad Marrakech, Marrakech, Morocco
3Natural Macromolecules Team, Ecole Normale Supérieure, University Cadi Ayyad Marrakech, Marrakech, Morocco

Tóm tắt

Chitosan is a chitin-derived biopolymer characterized by excellent bioactive properties, such as biodegradability and biocompatibility. In addition, due to its high film forming capability, chitosan is emerged as a promising natural polymer for tissue engineering. However, its application areas can be further extended by the improvement of its poor mechanical properties. In this context, the current work aimed to characterize the mechanical and physicochemical properties of α‑chitin whiskers-reinforced chitosan nanocomposite films (WRC-films). For this purpose, WRC-films were developed through the incorporation of an α-chitin obtained from Parapenaeus longirostris shrimp shells. Then, their physico‑mechanical properties, mainly the tensile strength and percentage of elongation at break, were compared with pure chitosan films (PC-films). The WRC-films showed an increased tensile strength, and a decreased percentage of elongation at break, compared to pure chitosan films. Altogether, these results plead in favor of the use of chitin whiskers as an additive in chitosan film matrix. In addition, to our knowledge this is the first report on the chitosan film reinforcement through the incorporation of the α-chitin extracted from the exoskeleton of Parapenaeus longirostris.

Tài liệu tham khảo

T. C. Mokhena and M. J. John, Cellulose 27, 1149 (2020).

D. Anjali Devi, B. Smitha, S. Sridhar, and T. M. Aminabhavi, J. Membr. Sci. 262, 91 (2005).

J.-P. Chen, G.-Y. Chang, and J. K. Chen, Colloids Surf., A 313, 183 (2008).

V. V. Kiroshka, T. A. Yurchuk, N. V. Repin, V. A. Petrova, I. V. Gofman, Yu. A. Skorik, E. V. Kiroshka, and T. P. Bondarenko, Cell Technol. Biol. Med. 3, 178 (2014).

V. V. Kiroshka, V. A. Petrova, D. D. Chernyakov, Y. O. Bozhkova, K. V. Kiroshka, Y. G. Baklagina, D. P. Romanov, R. V. Kremnev, and Y. A. Skorik, J. Mater. Sci.: Mater. Med. 28, 21 (2017).

J. Sriupayo, P. Supaphol, J. Blackwell, and R. Rujiravanit, Carbohydr. Polym. 62, 130 (2005).

A. M. Salaberria, R. H. Diaz, J. Labidi, and S. C. M. Fernandes, React. Funct. Polym. 89, 31 (2015).

FishStat Plus, Universal Software for Fishery Statistical Time Series (FAO, 2013). http://www.fao.org/fishery/statistics/software/fishstat/en. Cited 2022.

E. M. Dahmane, M. Taourirte, N. Eladlani, and M. Rhazi, Int. J. Polym. Anal. Charact. 19, 342 (2014).

E. M. Dahmane, M. Taourirte, N. Eladlani, and M. Rhazi, Mater. Today: Proc. 3, 2590 (2016).

D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

E. Azadbakht, Y. Maghsoudlou, M. Khomiri, and M. Kashiri, Food Packag. Shelf Life 17, 65 (2018).

F. Gebhardt, S. Seuss, M. C. Turhan, H. Hornberger, S. Virtanen, and A. R. Boccaccini, Mater. Lett. 66, 302 (2012).

Z. Liu, X. Ge, Y. Lu, S. Dong, Y. Zhao, and M. Zeng, Food Hydrocolloids. 26, 311 (2012).