Physico-chemical Characterization and Biosafety Evaluation of Atorvastatin Nanocapsules Co-encapsulated with Ginger Oil or Grape Seed Oil

Springer Science and Business Media LLC - Tập 13 - Trang 2418-2432 - 2023
Gabriel Pedroso Vicozzi1, Luiz Torres Neto1, Flávia Suelen De Oliveira Pereira2, Ingrid Mullich Flesch3, Caroline Portela Peruzzi3, Daiana Silva de Avila2, Solange Cristina Garcia3, Letícia Marques Colomé1, Eduardo André Bender1,4
1Programa de Pós-Graduação Em Ciências Farmacêuticas, Campus Uruguaiana, Universidade Federal Do Pampa, Uruguaiana, Brazil
2Programa de Pós-Graduação Em Bioquímica, Campus Uruguaiana, Universidade Federal Do Pampa, Uruguaiana, Brazil
3Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
4Research Group Nanobiotechnology and Nanotoxicology, Federal University of Pampa, Uruguaiana, Brazil

Tóm tắt

Cardiovascular diseases are one of the major causes of deaths around the world. The leading cause is related to high cholesterol levels; therefore, controlling these levels has been a successful strategy. Among the drugs used for this purpose, atorvastatin (ATV) has great efficacy; however, some side effects reduce patient adhesion. In this context, the development of ATV polymeric nanocapsules co-encapsulated with ginger (NCAtG) or grape seed (NCAtU) oil can reduce ATV toxicity and increase its efficacy. The objectives of this work were to evaluate the safety and efficacy of these nanoformulations in different experimental models. The formulations had nanometric sizes and suitable physio-chemical parameters. The biosafety was evaluated in terms of hemoglobin measurement, liberation of erythrocyte LDH, and blood coagulation cascade by the extrinsic (PTT) and intrinsic (aPTT) pathways after exposed to the nanoformulations were just high concentrations caused alterations in these parameters. Also, there is no cytotoxicity in the 3T3 cell lines and no alterations in the comet assay. The in vivo assays in Caenorhabditis elegans showed no alterations, in the survival, brood size, and length. And finally, the formulations demonstrated significative effect about the reduction of the lipidic levels of the nematodes, with high lipid levels.

Tài liệu tham khảo

Arrigoni, E., Del Re, M., Fidilio, L., Fogli, S., Danesi, R., & Di Paolo, A. (2017). Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. International Journal of Molecular Sciences, 18(1), 104. https://doi.org/10.3390/ijms18010104 Rahal, A. J., ElMallah, A. I., Poushuju, R. J., & Itani, R. (2016). Do statins really cause diabetes?: A meta-analysis of major randomized controlled clinical trials. Saudi Medical Journal, 37, 1051–1060. https://doi.org/10.15537/smj.2016.10.16078 Joy, T. R., & Hegele, R. A. (2009). Narrative review: Statin-related myopathy. Annals of Internal Medicine, 150, 858–868. https://doi.org/10.7326/0003-4819-150-12-200906160-00009 Rodriguez, F., Maron, D. J., Knowles, J. W., Virani, S. S., Lin, S., & Heidenreich, P. A. (2019). Association of statin adherence with mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiology, 4, 206–213. https://doi.org/10.1001/jamacardio.2018.4936 Stroes, E. S., Thompson, P. D., Corsini, A., Vladutiu, G. D., Raal, F. J., Ray, K. K., Roden, M., Stein, E., Tokgözoʇlu, L., Nordestgaard, B. G., Bruckert, E., De Backer, G., Krauss, R. M., Laufs, U., Santos, R. D., Hegele, R. A., Hovingh, G. K., Leiter, L. A., Mach, F., … Ginsberg, H. N. (2015). Statin-associated muscle symptoms: Impact on statin therapy - European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. European Heart Journal, 36, 1012–1022. https://doi.org/10.1093/eurheartj/ehv043 Wang, Y., Wei, X., Wang, F., Xu, J., Tang, X., & Li, N. (2018). Structural characterization and antioxidant activity of polysaccharide from ginger. International Journal of Biological Macromolecules, 111, 862–869. https://doi.org/10.1016/j.ijbiomac.2018.01.087 Ma, Z. F., & Zhang, H. (2017). Phytochemical constituents, health benefits, and industrial applications of grape seeds: Amini-review. Antioxidants., 6(3), 71. https://doi.org/10.3390/antiox6030071 Zern, T. L., Wood, R. J., Greene, C., West, K. L., Liu, Y., Aggarwal, D., Shachter, N. S., & Fernandez, M. L. (2005). Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. Journal of Nutrition, 135, 1911–1917. https://doi.org/10.1093/jn/135.8.1911 Atashak, S., Peeri, M., Azarbayjani, M. A., Stannard, S. R., & Haghighi, M. M. (2011). Obesity-related cardiovascular risk factors after long-term resistance training and ginger supplementation. Journal of Sports Science and Medicine, 10(4), 685–91. Caimari, A., Del Bas, J. M., Crescenti, A., & Arola, L. (2013). Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. International Journal of Obesity, 37, 576–583. https://doi.org/10.1038/IJO.2012.75 Akinyemi, A. J., Oboh, G., Ademiluyi, A. O., Boligon, A. A., & Athayde, M. L. (2016). Effect of two ginger varieties on arginase activity in hypercholesterolemic rats. Journal of Acupuncture and Meridian Studies, 9, 80–87. https://doi.org/10.1016/J.JAMS.2015.03.003 Khosravani, M., Azarbayjani, M., Abolmaesoomi, M., Yusof, A., Abidin, N. Z. Z., Rahimi, E., Feizolahi, F., Akbari, M., Seyedjalali, S., & Dehghan, F. (2016). Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. European Review for Medical and Pharmacological Sciences, 20(8), 1617–22. Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: A brief review. Journal of Global Health, 7, 70–77. https://doi.org/10.1016/j.glohj.2023.02.008 Mazayen, Z. M., Ghoneim, A. M., Elbatanony, R. S., Basalious, E. B., & Bendas, E. R. (2022). Pharmaceutical nanotechnology: From the bench to the market, Futur. Journal of Pharmaceutical Sciences, 8, 1–11. https://doi.org/10.1186/s43094-022-00400-0 Quintanar-Guerrero, D., Allémann, E., Doelker, E., & Fessi, H. (1998). Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical Research, 15, 1056–1062. https://doi.org/10.1023/A:1011934328471 Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113–142. https://doi.org/10.1016/J.IJPHARM.2009.10.018 Gholipourmalekabadi M., Mobaraki M., Ghaffari M., Zarebkohan A., Omrani V. F., Urbanska A. M., & Seifalian A. (2017). Targeted drug delivery based on gold nanoparticle derivatives. Current Pharmaceutical Design, 23(20), 2918–2929. https://doi.org/10.2174/1381612823666170419105413 Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16, 1671–1681. https://doi.org/10.2174/1389450115666140804124808 Bender, E. A., Adorne, M. D., Colomé, L. M., Abdalla, D. S. P., Guterres, S. S., & Pohlmann, A. R. (2012). Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. International Journal of Pharmaceutics, 426, 271–279. https://doi.org/10.1016/J.IJPHARM.2012.01.051 Charão, M. F., Baierle, M., Gauer, B., Goethel, G., Fracasso, R., Paese, K., Brucker, N., Moro, A. M., Bubols, G. B., Dias, B. B., Matte, U. S., Guterres, S. S., Pohlmann, A. R., & Garcia, S. C. (2015). Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 784–785, 1–9. https://doi.org/10.1016/J.MRGENTOX.2015.04.006 Wang, W., Jing, T., Xia, X., Tang, L., Huang, Z., Liu, F., Wang, Z., Ran, H., Li, M., & Xia, J. (2019). Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomaterials Science, 7, 4060–4074. https://doi.org/10.1039/c9bm01052a Ledda, M., Fioretti, D., Lolli, M. G., Papi, M., Di Gioia, C., Carletti, R., Ciasca, G., Foglia, S., Palmieri, V., Marchese, R., Grimaldi, S., Rinaldi, M., & Lisi, A. (2020). Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale, 12, 1759–1778. https://doi.org/10.1039/C9NR09683C Charão, M. F., Souto, C., Brucker, N., Barth, A., Jornada, D. S., Fagundez, D., Ávila, D. S., Eifler-Lima, V. L., Guterres, S. S., Pohlmann, A. R., & Garcia, S. C. (2015). Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. International Journal of Nanomedicine, 10, 5093–5106. https://doi.org/10.2147/IJN.S84909 Chan, W. T., Liu, C. C., Chiau, J. S. C., Tsai, S. T., Liang, C. K., Cheng, M. L., Lee, H. C., Yeung, C. Y., & Hou, S. Y. (2017). In vivo toxicologic study of larger silica nanoparticles in mice. International Journal of Nanomedicine, 12, 3421–3432. https://doi.org/10.2147/IJN.S126823 Roncato, J. F. F., Camara, D., Brussulo, Pereira T., & C., Quines C. B., Colomé L. M., Denardin C., Haas S., Ávila D. S. (2019). Lipid reducing potential of liposomes loaded with ethanolic extract of purple pitanga (Eugenia uniflora) administered to Caenorhabditis elegans. Journal of Liposome Research, 29(3), 274–282. https://doi.org/10.1080/08982104.2018.1552705 Wu, T., Xu, H., Liang, X., & Tang, M. (2019). Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere, 221, 708–726. Lee, K. E., Cho, S. H., Lee, H. B., Jeong, S. Y., & Yuk, S. H. (2003). Microencapsulation of lipid nanoparticles containing lipophilic drug. Journal of Microencapsulation, 20, 489–496. https://doi.org/10.1080/0265204031000093032 Kumar, N., Chaurasia, S., Patel, R. R., Khan, G., Kumar, V., & Mishra, B. (2017). Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharmaceutical Development and Technology, 22, 156–167. https://doi.org/10.3109/10837450.2015.1108983 Ahmed, A. B., Konwar, R., & Sengupta, R. (2015). Atorvastatin calcium loaded chitosan nanoparticles: In vitro evaluation and in vivo pharmacokinetic studies in rabbits, Brazilian. Journal of Pharmaceutical Sciences, 51, 467–477. https://doi.org/10.1590/S1984-82502015000200024 Deuchi, K., Kanauchi, O., Shizukuishi, M., & Kobayashi, E. (1995). Continuous and massive intake of chitosan affects mineral and fat-soluble vitamin status in rats fed on a high-fat diet. Bioscience, Biotechnology, and Biochemistry, 59, 1211–1216. https://doi.org/10.1271/bbb.59.1211 Varshosaz, J., Masoudi, S., Mehdikhani, M., Beni, B. H., & Farsaei, S. (2019). Atorvastatin lipid nanocapsules and gold nanoparticles embedded in injectable thermogelling hydrogel scaffold containing adipose tissue extracellular matrix for myocardial tissue regeneration. IET Nanobiotechnology., 13, 933–941. https://doi.org/10.1049/iet-nbt.2019.0035 Viçozzi, G. P., Torres Neto, L., da Silva, P. S., Nenê, L. R., Colomé, L. M., & Bender, E. A. (2020). Development and validation of high-performance liquid chromatography method for determination of atorvastatin in polymeric nanocapsules. Brazilian Journal of Development, 6, 63606–63617. https://doi.org/10.34117/bjdv6n8-697 Stella, B., Arpicco, S., Rocco, F., Marsaud, V., Renoir, J. M., Cattel, L., & Couvreur, P. (2007). Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. International Journal of Pharmaceutics, 344, 71–77. https://doi.org/10.1016/j.ijpharm.2007.06.006 Sulston, J. E., & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics, 77, 95–104. https://doi.org/10.1093/genetics/77.1.95 Campos, E. V. R., Fraceto, L. F., & Fraceto, L. F. (2017). Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 139, 245–253. https://doi.org/10.1016/j.ecoenv.2017.01.045 Sulistiyani, Purwakusumah, E. P., & Andrianto, D. (2017). In vivo inhibition of lipid accumulation in Caenorhabditis elegans. IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 58, 012067. https://doi.org/10.1088/1755-1315/58/1/012067 Clemente I., Colzi I., & Falsini S. (2019). Lipid-based nanoformulations from plants for sustainable drug delivery. Novel Drug Delivery Systems for Phytoconstituents (1st ed., pp. 301–312). https://doi.org/10.1201/9781351057639-15/LIPID-BASED-NANOFORMULATIONS-PLANTS-SUSTAINABLE-DRUG-DELIVERY-ILARIA-CLEMENTE-ILARIA-COLZI-SARA-FALSINI Schaffazick, S. R., Pohlmann, A. R., Dalla-Costa, T., & Guterres, S. S. (2003). Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 56, 501–505. https://doi.org/10.1016/S0939-6411(03)00139-5 Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Methods Molecular Biology, 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6 Tantra, R., Schulze, P., & Quincey, P. (2010). Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology., 8, 279–285. https://doi.org/10.1016/j.partic.2010.01.003 Rigo, L. A., Frescura, V., Fiel, L., Coradini, K., Ourique, A. F., Emanuelli, T., Quatrin, A., Tedesco, S., Da Silva, C. B., Guterres, S. S., Pohlmann, A. R., & Beck, R. C. R. (2014). Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study. Pharmaceutical Development and Technology, 19, 789–798. https://doi.org/10.3109/10837450.2013.829097 Xin, H., Sha, X., Jiang, X., Zhang, W., Chen, L., & Fang, X. (2012). Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 33, 8167–8176. https://doi.org/10.1016/j.biomaterials.2012.07.046 Łukasiewicz, S., Mikołajczyk, A., Szczęch, M., Szczepanowicz, K., Warszyński, P., & Dziedzicka-Wasylewska, M. (2019). Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. J. Nanoparticle Res., 21, 1–16. https://doi.org/10.1007/S11051-019-4587-1/FIGURES/8 El-Sayed, S., & Moustafa, R. A. (2016). Effect of combined administration of ginger and cinnamon on high fat diet induced hyperlipidemia in rats. Journal of Pharmaceutical, Chemical and Biological Sciences, 3(4), 561–572. http://www.jpcbs.info/2015_3_4_15_Salah%20M.pdf Kumara, J. B. V., Ramakrishna, S., & Madhusudhan, B. (2017). Preparation and characterisation of atorvastatin and curcumin-loaded chitosan nanoformulations for oral delivery in atherosclerosis. IET Nanobiotechnology., 11, 96–103. https://doi.org/10.1049/IET-NBT.2016.0062 Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2011). Formulation of lipid core nanocapsules. Colloids Surfaces A Physicochem. Engineering Aspects, 375, 200–208. https://doi.org/10.1016/j.colsurfa.2010.12.011 Kumar, P. P. (2012). Atorvastatin Loaded solid lipid nanoparticles: Formulation, optimization, and in - vitro characterization. IOSR Journal of Pharmacy, 2, 23–32. https://doi.org/10.9790/3013-25102332 Gehrcke, M., Giuliani, L. M., Ferreira, L. M., Barbieri, A. V., Sari, M. H. M., da Silveira, E. F., Azambuja, J. H., Nogueira, C. W., Braganhol, E., & Cruz, L. (2017). Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules. Materials Science and Engineering C, 74, 279–286. https://doi.org/10.1016/j.msec.2016.12.006 Natrajan, D., Srinivasan, S., Sundar, K., & Ravindran, A. (2015). Formulation of essential oil-loaded chitosan-alginate nanocapsules. Journal of Food and Drug Analysis, 23, 560–568. https://doi.org/10.1016/j.jfda.2015.01.001 Vandghanooni, S., & Eskandani, M. (2011). Comet assay: A method to evaluate genotoxicity of nano-drug delivery system. BioImpacts: BI, 1, 87–97. https://doi.org/10.5681/bi.2011.012 Dandekar, P., Dhumal, R., Jain, R., Tiwari, D., Vanage, G., & Patravale, V. (2010). Toxicological evaluation of pH-sensitive nanoparticles of curcumin: Acute, sub-acute and genotoxicity studies. Food and Chemical Toxicology, 48, 2073–2089. https://doi.org/10.1016/j.fct.2010.05.008 Iglesias, T., López de Cerain, A., Irache, J. M., Martín-Arbella, N., Wilcox, M., Pearson, J., & Azqueta, A. (2017). Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery. International Journal of Pharmaceutics, 517, 67–79. https://doi.org/10.1016/J.IJPHARM.2016.11.059 Kuervers, L. M., Jones, C. L., O’Neil, N. J., & Baillie, D. L. (2003). The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Molecular Genetics and Genomics, 270, 121–131. https://doi.org/10.1007/S00438-003-0900-9 Magner, D. B., Wollam, J., Shen, Y., Hoppe, C., Li, D., Latza, C., Rottiers, V., Hutter, H., & Antebi, A. (2013). The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans. Cell Metabolism, 18, 212–224. https://doi.org/10.1016/J.CMET.2013.07.007 Lee, E. B., Kim, J. H., Kim, Y. J., Noh, Y. J., Kim, S. J., Hwang, I. H., & Kim, D. K. (2018). Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Archives of Pharmacal Research, 41, 743–752. https://doi.org/10.1007/s12272-018-1052-0 Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K. H., Kim, D., & Park, Y. (2019). Trans-trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function, 10, 4966–4974. https://doi.org/10.1039/c9fo00778d Rodrigues C. F., Salgueiro W., Bianchini M., Veit J. C., Puntel R. L., Emanuelli T., Dernadin C. C., & Ávila D. S. (2018). Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. Nutrition & Metabolism (Lond), 15, 8315. https://doi.org/10.1186/S12986-018-0317-4