Physico-chemical Characterization and Biosafety Evaluation of Atorvastatin Nanocapsules Co-encapsulated with Ginger Oil or Grape Seed Oil
Tóm tắt
Cardiovascular diseases are one of the major causes of deaths around the world. The leading cause is related to high cholesterol levels; therefore, controlling these levels has been a successful strategy. Among the drugs used for this purpose, atorvastatin (ATV) has great efficacy; however, some side effects reduce patient adhesion. In this context, the development of ATV polymeric nanocapsules co-encapsulated with ginger (NCAtG) or grape seed (NCAtU) oil can reduce ATV toxicity and increase its efficacy. The objectives of this work were to evaluate the safety and efficacy of these nanoformulations in different experimental models. The formulations had nanometric sizes and suitable physio-chemical parameters. The biosafety was evaluated in terms of hemoglobin measurement, liberation of erythrocyte LDH, and blood coagulation cascade by the extrinsic (PTT) and intrinsic (aPTT) pathways after exposed to the nanoformulations were just high concentrations caused alterations in these parameters. Also, there is no cytotoxicity in the 3T3 cell lines and no alterations in the comet assay. The in vivo assays in Caenorhabditis elegans showed no alterations, in the survival, brood size, and length. And finally, the formulations demonstrated significative effect about the reduction of the lipidic levels of the nematodes, with high lipid levels.
Tài liệu tham khảo
Arrigoni, E., Del Re, M., Fidilio, L., Fogli, S., Danesi, R., & Di Paolo, A. (2017). Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. International Journal of Molecular Sciences, 18(1), 104. https://doi.org/10.3390/ijms18010104
Rahal, A. J., ElMallah, A. I., Poushuju, R. J., & Itani, R. (2016). Do statins really cause diabetes?: A meta-analysis of major randomized controlled clinical trials. Saudi Medical Journal, 37, 1051–1060. https://doi.org/10.15537/smj.2016.10.16078
Joy, T. R., & Hegele, R. A. (2009). Narrative review: Statin-related myopathy. Annals of Internal Medicine, 150, 858–868. https://doi.org/10.7326/0003-4819-150-12-200906160-00009
Rodriguez, F., Maron, D. J., Knowles, J. W., Virani, S. S., Lin, S., & Heidenreich, P. A. (2019). Association of statin adherence with mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiology, 4, 206–213. https://doi.org/10.1001/jamacardio.2018.4936
Stroes, E. S., Thompson, P. D., Corsini, A., Vladutiu, G. D., Raal, F. J., Ray, K. K., Roden, M., Stein, E., Tokgözoʇlu, L., Nordestgaard, B. G., Bruckert, E., De Backer, G., Krauss, R. M., Laufs, U., Santos, R. D., Hegele, R. A., Hovingh, G. K., Leiter, L. A., Mach, F., … Ginsberg, H. N. (2015). Statin-associated muscle symptoms: Impact on statin therapy - European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. European Heart Journal, 36, 1012–1022. https://doi.org/10.1093/eurheartj/ehv043
Wang, Y., Wei, X., Wang, F., Xu, J., Tang, X., & Li, N. (2018). Structural characterization and antioxidant activity of polysaccharide from ginger. International Journal of Biological Macromolecules, 111, 862–869. https://doi.org/10.1016/j.ijbiomac.2018.01.087
Ma, Z. F., & Zhang, H. (2017). Phytochemical constituents, health benefits, and industrial applications of grape seeds: Amini-review. Antioxidants., 6(3), 71. https://doi.org/10.3390/antiox6030071
Zern, T. L., Wood, R. J., Greene, C., West, K. L., Liu, Y., Aggarwal, D., Shachter, N. S., & Fernandez, M. L. (2005). Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. Journal of Nutrition, 135, 1911–1917. https://doi.org/10.1093/jn/135.8.1911
Atashak, S., Peeri, M., Azarbayjani, M. A., Stannard, S. R., & Haghighi, M. M. (2011). Obesity-related cardiovascular risk factors after long-term resistance training and ginger supplementation. Journal of Sports Science and Medicine, 10(4), 685–91.
Caimari, A., Del Bas, J. M., Crescenti, A., & Arola, L. (2013). Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. International Journal of Obesity, 37, 576–583. https://doi.org/10.1038/IJO.2012.75
Akinyemi, A. J., Oboh, G., Ademiluyi, A. O., Boligon, A. A., & Athayde, M. L. (2016). Effect of two ginger varieties on arginase activity in hypercholesterolemic rats. Journal of Acupuncture and Meridian Studies, 9, 80–87. https://doi.org/10.1016/J.JAMS.2015.03.003
Khosravani, M., Azarbayjani, M., Abolmaesoomi, M., Yusof, A., Abidin, N. Z. Z., Rahimi, E., Feizolahi, F., Akbari, M., Seyedjalali, S., & Dehghan, F. (2016). Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. European Review for Medical and Pharmacological Sciences, 20(8), 1617–22.
Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: A brief review. Journal of Global Health, 7, 70–77. https://doi.org/10.1016/j.glohj.2023.02.008
Mazayen, Z. M., Ghoneim, A. M., Elbatanony, R. S., Basalious, E. B., & Bendas, E. R. (2022). Pharmaceutical nanotechnology: From the bench to the market, Futur. Journal of Pharmaceutical Sciences, 8, 1–11. https://doi.org/10.1186/s43094-022-00400-0
Quintanar-Guerrero, D., Allémann, E., Doelker, E., & Fessi, H. (1998). Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical Research, 15, 1056–1062. https://doi.org/10.1023/A:1011934328471
Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113–142. https://doi.org/10.1016/J.IJPHARM.2009.10.018
Gholipourmalekabadi M., Mobaraki M., Ghaffari M., Zarebkohan A., Omrani V. F., Urbanska A. M., & Seifalian A. (2017). Targeted drug delivery based on gold nanoparticle derivatives. Current Pharmaceutical Design, 23(20), 2918–2929. https://doi.org/10.2174/1381612823666170419105413
Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16, 1671–1681. https://doi.org/10.2174/1389450115666140804124808
Bender, E. A., Adorne, M. D., Colomé, L. M., Abdalla, D. S. P., Guterres, S. S., & Pohlmann, A. R. (2012). Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. International Journal of Pharmaceutics, 426, 271–279. https://doi.org/10.1016/J.IJPHARM.2012.01.051
Charão, M. F., Baierle, M., Gauer, B., Goethel, G., Fracasso, R., Paese, K., Brucker, N., Moro, A. M., Bubols, G. B., Dias, B. B., Matte, U. S., Guterres, S. S., Pohlmann, A. R., & Garcia, S. C. (2015). Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 784–785, 1–9. https://doi.org/10.1016/J.MRGENTOX.2015.04.006
Wang, W., Jing, T., Xia, X., Tang, L., Huang, Z., Liu, F., Wang, Z., Ran, H., Li, M., & Xia, J. (2019). Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomaterials Science, 7, 4060–4074. https://doi.org/10.1039/c9bm01052a
Ledda, M., Fioretti, D., Lolli, M. G., Papi, M., Di Gioia, C., Carletti, R., Ciasca, G., Foglia, S., Palmieri, V., Marchese, R., Grimaldi, S., Rinaldi, M., & Lisi, A. (2020). Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale, 12, 1759–1778. https://doi.org/10.1039/C9NR09683C
Charão, M. F., Souto, C., Brucker, N., Barth, A., Jornada, D. S., Fagundez, D., Ávila, D. S., Eifler-Lima, V. L., Guterres, S. S., Pohlmann, A. R., & Garcia, S. C. (2015). Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. International Journal of Nanomedicine, 10, 5093–5106. https://doi.org/10.2147/IJN.S84909
Chan, W. T., Liu, C. C., Chiau, J. S. C., Tsai, S. T., Liang, C. K., Cheng, M. L., Lee, H. C., Yeung, C. Y., & Hou, S. Y. (2017). In vivo toxicologic study of larger silica nanoparticles in mice. International Journal of Nanomedicine, 12, 3421–3432. https://doi.org/10.2147/IJN.S126823
Roncato, J. F. F., Camara, D., Brussulo, Pereira T., & C., Quines C. B., Colomé L. M., Denardin C., Haas S., Ávila D. S. (2019). Lipid reducing potential of liposomes loaded with ethanolic extract of purple pitanga (Eugenia uniflora) administered to Caenorhabditis elegans. Journal of Liposome Research, 29(3), 274–282. https://doi.org/10.1080/08982104.2018.1552705
Wu, T., Xu, H., Liang, X., & Tang, M. (2019). Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere, 221, 708–726.
Lee, K. E., Cho, S. H., Lee, H. B., Jeong, S. Y., & Yuk, S. H. (2003). Microencapsulation of lipid nanoparticles containing lipophilic drug. Journal of Microencapsulation, 20, 489–496. https://doi.org/10.1080/0265204031000093032
Kumar, N., Chaurasia, S., Patel, R. R., Khan, G., Kumar, V., & Mishra, B. (2017). Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharmaceutical Development and Technology, 22, 156–167. https://doi.org/10.3109/10837450.2015.1108983
Ahmed, A. B., Konwar, R., & Sengupta, R. (2015). Atorvastatin calcium loaded chitosan nanoparticles: In vitro evaluation and in vivo pharmacokinetic studies in rabbits, Brazilian. Journal of Pharmaceutical Sciences, 51, 467–477. https://doi.org/10.1590/S1984-82502015000200024
Deuchi, K., Kanauchi, O., Shizukuishi, M., & Kobayashi, E. (1995). Continuous and massive intake of chitosan affects mineral and fat-soluble vitamin status in rats fed on a high-fat diet. Bioscience, Biotechnology, and Biochemistry, 59, 1211–1216. https://doi.org/10.1271/bbb.59.1211
Varshosaz, J., Masoudi, S., Mehdikhani, M., Beni, B. H., & Farsaei, S. (2019). Atorvastatin lipid nanocapsules and gold nanoparticles embedded in injectable thermogelling hydrogel scaffold containing adipose tissue extracellular matrix for myocardial tissue regeneration. IET Nanobiotechnology., 13, 933–941. https://doi.org/10.1049/iet-nbt.2019.0035
Viçozzi, G. P., Torres Neto, L., da Silva, P. S., Nenê, L. R., Colomé, L. M., & Bender, E. A. (2020). Development and validation of high-performance liquid chromatography method for determination of atorvastatin in polymeric nanocapsules. Brazilian Journal of Development, 6, 63606–63617. https://doi.org/10.34117/bjdv6n8-697
Stella, B., Arpicco, S., Rocco, F., Marsaud, V., Renoir, J. M., Cattel, L., & Couvreur, P. (2007). Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. International Journal of Pharmaceutics, 344, 71–77. https://doi.org/10.1016/j.ijpharm.2007.06.006
Sulston, J. E., & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics, 77, 95–104. https://doi.org/10.1093/genetics/77.1.95
Campos, E. V. R., Fraceto, L. F., & Fraceto, L. F. (2017). Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 139, 245–253. https://doi.org/10.1016/j.ecoenv.2017.01.045
Sulistiyani, Purwakusumah, E. P., & Andrianto, D. (2017). In vivo inhibition of lipid accumulation in Caenorhabditis elegans. IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 58, 012067. https://doi.org/10.1088/1755-1315/58/1/012067
Clemente I., Colzi I., & Falsini S. (2019). Lipid-based nanoformulations from plants for sustainable drug delivery. Novel Drug Delivery Systems for Phytoconstituents (1st ed., pp. 301–312). https://doi.org/10.1201/9781351057639-15/LIPID-BASED-NANOFORMULATIONS-PLANTS-SUSTAINABLE-DRUG-DELIVERY-ILARIA-CLEMENTE-ILARIA-COLZI-SARA-FALSINI
Schaffazick, S. R., Pohlmann, A. R., Dalla-Costa, T., & Guterres, S. S. (2003). Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 56, 501–505. https://doi.org/10.1016/S0939-6411(03)00139-5
Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Methods Molecular Biology, 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6
Tantra, R., Schulze, P., & Quincey, P. (2010). Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology., 8, 279–285. https://doi.org/10.1016/j.partic.2010.01.003
Rigo, L. A., Frescura, V., Fiel, L., Coradini, K., Ourique, A. F., Emanuelli, T., Quatrin, A., Tedesco, S., Da Silva, C. B., Guterres, S. S., Pohlmann, A. R., & Beck, R. C. R. (2014). Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study. Pharmaceutical Development and Technology, 19, 789–798. https://doi.org/10.3109/10837450.2013.829097
Xin, H., Sha, X., Jiang, X., Zhang, W., Chen, L., & Fang, X. (2012). Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 33, 8167–8176. https://doi.org/10.1016/j.biomaterials.2012.07.046
Łukasiewicz, S., Mikołajczyk, A., Szczęch, M., Szczepanowicz, K., Warszyński, P., & Dziedzicka-Wasylewska, M. (2019). Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. J. Nanoparticle Res., 21, 1–16. https://doi.org/10.1007/S11051-019-4587-1/FIGURES/8
El-Sayed, S., & Moustafa, R. A. (2016). Effect of combined administration of ginger and cinnamon on high fat diet induced hyperlipidemia in rats. Journal of Pharmaceutical, Chemical and Biological Sciences, 3(4), 561–572. http://www.jpcbs.info/2015_3_4_15_Salah%20M.pdf
Kumara, J. B. V., Ramakrishna, S., & Madhusudhan, B. (2017). Preparation and characterisation of atorvastatin and curcumin-loaded chitosan nanoformulations for oral delivery in atherosclerosis. IET Nanobiotechnology., 11, 96–103. https://doi.org/10.1049/IET-NBT.2016.0062
Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2011). Formulation of lipid core nanocapsules. Colloids Surfaces A Physicochem. Engineering Aspects, 375, 200–208. https://doi.org/10.1016/j.colsurfa.2010.12.011
Kumar, P. P. (2012). Atorvastatin Loaded solid lipid nanoparticles: Formulation, optimization, and in - vitro characterization. IOSR Journal of Pharmacy, 2, 23–32. https://doi.org/10.9790/3013-25102332
Gehrcke, M., Giuliani, L. M., Ferreira, L. M., Barbieri, A. V., Sari, M. H. M., da Silveira, E. F., Azambuja, J. H., Nogueira, C. W., Braganhol, E., & Cruz, L. (2017). Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules. Materials Science and Engineering C, 74, 279–286. https://doi.org/10.1016/j.msec.2016.12.006
Natrajan, D., Srinivasan, S., Sundar, K., & Ravindran, A. (2015). Formulation of essential oil-loaded chitosan-alginate nanocapsules. Journal of Food and Drug Analysis, 23, 560–568. https://doi.org/10.1016/j.jfda.2015.01.001
Vandghanooni, S., & Eskandani, M. (2011). Comet assay: A method to evaluate genotoxicity of nano-drug delivery system. BioImpacts: BI, 1, 87–97. https://doi.org/10.5681/bi.2011.012
Dandekar, P., Dhumal, R., Jain, R., Tiwari, D., Vanage, G., & Patravale, V. (2010). Toxicological evaluation of pH-sensitive nanoparticles of curcumin: Acute, sub-acute and genotoxicity studies. Food and Chemical Toxicology, 48, 2073–2089. https://doi.org/10.1016/j.fct.2010.05.008
Iglesias, T., López de Cerain, A., Irache, J. M., Martín-Arbella, N., Wilcox, M., Pearson, J., & Azqueta, A. (2017). Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery. International Journal of Pharmaceutics, 517, 67–79. https://doi.org/10.1016/J.IJPHARM.2016.11.059
Kuervers, L. M., Jones, C. L., O’Neil, N. J., & Baillie, D. L. (2003). The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Molecular Genetics and Genomics, 270, 121–131. https://doi.org/10.1007/S00438-003-0900-9
Magner, D. B., Wollam, J., Shen, Y., Hoppe, C., Li, D., Latza, C., Rottiers, V., Hutter, H., & Antebi, A. (2013). The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans. Cell Metabolism, 18, 212–224. https://doi.org/10.1016/J.CMET.2013.07.007
Lee, E. B., Kim, J. H., Kim, Y. J., Noh, Y. J., Kim, S. J., Hwang, I. H., & Kim, D. K. (2018). Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Archives of Pharmacal Research, 41, 743–752. https://doi.org/10.1007/s12272-018-1052-0
Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K. H., Kim, D., & Park, Y. (2019). Trans-trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function, 10, 4966–4974. https://doi.org/10.1039/c9fo00778d
Rodrigues C. F., Salgueiro W., Bianchini M., Veit J. C., Puntel R. L., Emanuelli T., Dernadin C. C., & Ávila D. S. (2018). Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. Nutrition & Metabolism (Lond), 15, 8315. https://doi.org/10.1186/S12986-018-0317-4