Lớp zirconia được lắng đọng hơi vật lý trên titan: chế tạo, đặc trưng và tương tác với tế bào osteoblast người

Springer Science and Business Media LLC - Tập 26 - Trang 1-8 - 2015
Milena R. Kaluđerović1, Stephan Mändl2, Hannes Kohlweyer1, Hans-Ludwig Graf1
1Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
2Leibniz Institut für Oberflächenmodifizierung, Leipzig, Germany

Tóm tắt

Phương pháp lắng đọng hơi vật lý zirconia đã được sử dụng để chế tạo hai bề mặt titan mới M1 và M2 với độ dày lớp khác nhau. Các bề mặt mới này đã được đặc trưng hóa về hóa học, địa hình và hình thái bằng các kỹ thuật bề mặt và trạng thái rắn. Tế bào osteoblast sơ cấp được sử dụng cho các nghiên cứu in vitro. Phân tích DAPI được áp dụng để đánh giá sự tăng sinh tế bào, trong khi đó để phân tích biểu hiện của sialoprotein xương (BSP), osteonectin và yếu tố tăng trưởng chuyển hóa-β (TGF-β), các phân tích miễn dịch hóa học được sử dụng. Vật liệu M1 và M2 đã ảnh hưởng đến sự tăng sinh tế bào tương ứng với độ nhám bề mặt của chúng, với ảnh hưởng của chúng đến số lượng tế bào nằm giữa ảnh hưởng của hai bề mặt thô (Ticer, SS) và hai bề mặt mịn (Ti cp và Cercon). Ảnh hưởng khác nhau của các vật liệu được nghiên cứu đối với việc sản xuất BSP của tế bào osteoblast (tất cả các vật liệu có ảnh hưởng tương tự), ON (Cercon—cao hơn; SS—thấp hơn cho các vật liệu khác) và TGF-β (Cercon khác biệt) đã được ghi nhận.

Từ khóa

#lắng đọng hơi vật lý #zirconia #titan #tế bào osteoblast #nền tảng sinh học #khả năng tương tác

Tài liệu tham khảo

Babu Rs A, Ogle O. Tissue response: biomaterials, dental implants, and compromised osseous tissue. Dent Clin North Am. 2015;59:305–15. Ramazanoglu M, Oshida Y. Osseointegration and bioscience of implant surfaces—current concepts at bone-implant interface. In: Turkyilmaz I, editor. Implant dentistry—a rapidly evolving practice. Rijeka: InTech; 2011. p. 57–82. Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci. 2013;5:162–7. Meltzer AM. Primary stability and initial bone-to-implant contact: the effects on immediate placement and restoration of dental implants. J Implant Reconstruct Dent. 2009;1:35–41. Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases. 2015;3:52–7. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000;15:675–90. Diamanti MV, Del Curto B, Pedeferri M. Anodic oxidation of titanium: from technical aspects to biomedical applications. J Appl Biomater Biomech. 2011;9:55–69. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials. 2004;25:3421–8. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998;40:1–11. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res. 1998;9:11–9. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24:4663–70. Kim B-S, Kim JS, Park YM, Choi B-Y, Lee J. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Mater Sci Eng, C. 2013;33:1554–60. Spear KE. Principles and applications of chemical vapor deposition (CVD). Pure Appl Chem. 1982;54:1297–311. Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog Mater Sci. 2013;58:261–326. Elias CN. Factors affecting the success of dental implants. In: Turkyilmaz I, editor. Implant dentistry—a rapidly evolving practice. Rijeka: InTech; 2011. p. 319–64. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24:289–98. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299–307. Bankoğlu Güngör M, Aydın C, Yılmaz H, Gül EB. An overview of zirconia dental implants: basic properties and clinical application of three cases. J Oral Implantol. 2014;40:485–94. Pae A, Lee H, Kim H-S, Kwon Y-D, Woo Y-H. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater. 2009;4:025005. doi:10.1088/1748-6041/4/2/025005. Aboushelib MN. Long term fatigue behavior of zirconia based dental ceramics. Materials. 2010;3:2975–85. Lenz S. Keramikimplantate- Zirkonimplantate- mit einer Titan- oder Titanoxidbeschichtung des intraossären Teiles Anionischen Organozinnverbindungen. EU Patent EP2018878 12.03.2009. Kaluđerović MR, Schreckenbach JP, Graf H-L. Zirconia coated titanium for implants and their interactions with osteoblasts cells. Mater Sci Eng C. 2014;44:254–61. Kaluđerović MR, Schreckenbach JP, Graf H-L. Plasma-electrochemical deposition of porous zirconia on titanium-based dental material and in vitro interactions with primary osteoblasts cells. J Biomat Appl. 2015. doi: 10.1177/0885328215582111. Graf H-L. Zur Entwicklung und Charakterisierung eines neuen Implantatsystems. Habilitation thesis, Universität Leipzig; 1997. Gehrke P, Stock M. Zirconium oxide implant abutments: a new era in tensile strength, light dynamics and biocompatibility. Dentsply Friadent. 2004;1–8. Boxmann RL, Sanders DM, Martin PJ. Handbook of vacuum arc science and technology. Park Ridge: Noyes Publications; 1995. Graf H-L, Stoeva S, Armbruster FP, Neuhaus J, Hilbig H. Effect of bone sialoprotein and collagen coating on cell attachment to TICER® and pure titanium implant surfaces. Int J Oral Maxillofac Surg. 2008;37:634–40. Manova D, Gerlach JW, Mändl S. Thin film deposition using energetic ions. Materials. 2010;3:4109–41. Kaluđerović MR, Schreckenbach JP, Graf H-L. First titanium dental implants with white surfaces: preparation and in vitro tests. Dent Mater. 2014;30:759–68. Kourouklis GA, Liarokapis E. Pressure and temperature dependence of the Raman spectra of zirconia and hafnia. J Am Ceram Soc. 1991;74:520–3. Kim B-K, Hahn J-W, Han KR. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. J Mat Sci Lett. 1997;16:669–71. Schirmer S. Oberflächenbeschichtung auf Zirkon- und Titanbasis für den Einsatz im Dentalbereich. Fachhochschule Osnabrück: Diplomarbeit; 2007. Kue R, Sohrabi A, Nagle D, Frondoza C, Hungerford D. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials. 1999;20:1195–201. Jäger M, Zilkens C, Zanger K, Krauspe R. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J Biomed Biotechnol. 2007;2007:69036. doi:10.1155/2007/69036. Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3:269–305. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7:329–45. Veis AA, Papadimitriou S, Trisi P, Tsirlis AT, Parissis NA, Kenealy JN. Osseointegration of Osseotite® and machined-surfaced titanium implants in membrane-covered critical-sized defects: a histologic and histometric study in dogs. Clin Oral Implants Res. 2007;18:153–60. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res. 2001;12:515–25. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25:889–902. Yamamichi N, Pugdee K, Chang W-J, Lee S-Y, Yoshinari M, Hayakawa T, Abiko Y. Gene expression monitoring in osteoblasts on titanium coated with fibronectin-derived peptide. Dent Mater J. 2008;27:744–50. Isaac J, Galtayries A, Kizuki T, Kokubo T, Berdal A, Sautier J-M. Bioengineered titanium surfaces affect the gene-expression and phenotypic response of osteoprogenitor cells derived from mouse calvarial bones. Eur Cell Mater. 2010;20:178–96. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med. 1999;10:79–98. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981;26:99–105. Chen G, Deng C, Li Y-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88. Lian N, Lin T, Liu W, Wang W, Li L, Sun S, Nyman JS, Yang X. Transforming growth factor β suppresses osteoblast differentiation via the vimentin activating transcription factor 4 (ATF4) axis. J Biol Chem. 2012;287:35975–84.