Physical nuclear organization: loops and entropy

Current Opinion in Cell Biology - Tập 23 - Trang 332-337 - 2011
Dieter W Heermann1,2
1Theoretical Biophysics Group, Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
2The Jackson Laboratory, Bar Harbor, ME, USA

Tài liệu tham khảo

Gondor, 2009, Chromosome crosstalk in three dimensions, Nature, 461, 212, 10.1038/nature08453 Kadauke, 2009, Chromatin loops in gene regulation, Bba Gene Regul Mech, 1789, 17 SSexton, 2009, Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation, Semin Cell Dev Biol, 20, 849, 10.1016/j.semcdb.2009.06.004 Zlatanova, 2009, CCCTC-binding factor: to loop or to bridge, Cell Mol Life Sci, 66, 1647, 10.1007/s00018-009-8647-z Nunez, 2009, Nuclear organization in the 3D space of the nucleus-cause or consequence?, Curr Opin Genet Dev, 19, 424, 10.1016/j.gde.2009.07.005 Lieberman-Aiden, 2009, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289, 10.1126/science.1181369 Yuan, 2005, Genome-scale identification of nucleosome positions in S. cerevisiae, Science, 309, 626, 10.1126/science.1112178 Kosak, 2007, Coordinate gene regulation during hematopoiesis is related to genomic organization, PLoS Biol, 5, e309, 10.1371/journal.pbio.0050309 Lieb, 2005, Control of transcription through intragenic patterns of nucleosome composition, Cell, 123, 10.1016/j.cell.2005.12.010 Segal, 2006, A genomic code for nucleosome positioning, Nature, 442, 772, 10.1038/nature04979 Kaplan, 2009, The DNA-encoded nucleosome organization of a eukaryotic genome, Nature, 458, 362, 10.1038/nature07667 Diesinger, 2009, Depletion effects massively change chromatin properties and influence genome folding, Biophys J, 97, 10.1016/j.bpj.2009.06.057 Diesinger, 2010, Histone Depletion Facilitates Chromatin Loops on the Kilobasepair Scale, Biophys J, 99, 10.1016/j.bpj.2010.08.039 Cook, 2010, A model for all genomes: the role of transcription factories, J Mol Biol, 395, 1, 10.1016/j.jmb.2009.10.031 Mitchell, 2008, Transcription factories are nuclear subcompartments that remain in the absence of transcription, Genes Dev, 22, 20, 10.1101/gad.454008 Sutherland, 2009, Transcription factories: gene expression in unions?, Nat Rev Genet, 10, 457, 10.1038/nrg2592 Han, 2008, CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region, Mol Cell Biol, 28, 1124, 10.1128/MCB.01361-07 Nativio, 2009, Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus, PLoS Genet, 5, e1000739, 10.1371/journal.pgen.1000739 Noordermeer, 2008, Joining the loops: beta-globin gene regulation, Iubmb Life, 60, 824, 10.1002/iub.129 Kooren, 2007, Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice, J Biol Chem, 282, 16544, 10.1074/jbc.M701159200 Simonis, 2008, FISH-eyed and genome-wide views on the spatial organisation of gene expression, Biochim Biophys Acta, 1783, 60, 10.1016/j.bbamcr.2008.07.020 Mateos-Langerak, 2008, Polycomb group proteins and long-range gene regulation, Adv Genet, 61, 45, 10.1016/S0065-2660(07)00002-8 Bushey, 2008, Chromatin insulators: regulatory mechanisms and epigenetic inheritance, Mol Cell, 32, 1, 10.1016/j.molcel.2008.08.017 Simonis, 2006, Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C), Nat Genet, 38, 1348, 10.1038/ng1896 Daniel, 2004, Chromosome loops arising from intrachromosomal tethering of telomeres occur at high frequency in G1 (non-cycling) mitotic cells: implications for telomere capture, Cell Chromosome, 3, 3, 10.1186/1475-9268-3-3 Deng, 2010, Do chromatin loops provide epigenetic gene expression states?, Curr Opin Genet Dev, 20, 548, 10.1016/j.gde.2010.06.007 Bohn, 2010, Diffusion-driven looping provides a consistent framework for chromatin organization, PLoS ONE, 5, e12218, 10.1371/journal.pone.0012218 Marenduzzo, 2006, Entropy-Driven Genome Organization, Biophysical Journal, 90, 3712, 10.1529/biophysj.105.077685 Bohn, 2007, Random loop model for long polymers, Phys Rev E Stat Nonlin Soft Matter Phys, 76, 051805, 10.1103/PhysRevE.76.051805 Cook, 2009, Entropic organization of interphase chromosomes, J Cell Biol, 186, 825, 10.1083/jcb.200903083 Bohn, 2009, Conformational properties of compact polymers, J Chem Phys, 130, 174901, 10.1063/1.3126651 Bohn, 2010, Influence of the catenation constraint on elongation and segregation of ring polymers, Macromolecules, 43, 2564, 10.1021/ma902623u Bohn, 2010, Topological interactions between ring polymers: implications for chromatin loops, J. Chem. Phys., 132, 044904, 10.1063/1.3302812 Bohn, 2011, Repulsive forces between looping chromosomes induce entropy-driven segregation, PLoS ONE, 6, e14428, 10.1371/journal.pone.0014428 Jun, 2010, Entropy as the driver of chromosome segregation, Nat Rev Microbiol, 8, 600, 10.1038/nrmicro2391 Lanctot, 2007, Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat Rev Genet, 8, 104, 10.1038/nrg2041 Drissen, 2004, The active spatial organization of the beta-globin locus requires the transcription factor EKLF, Genes Dev, 18, 2485, 10.1101/gad.317004 Vakoc, 2005, Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1, Mol Cell, 17, 453, 10.1016/j.molcel.2004.12.028 Jing, 2008, Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus, Mol Cell, 29, 232, 10.1016/j.molcel.2007.11.020 Mehta, 2010, Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts, Genome Biol, 11, R5, 10.1186/gb-2010-11-1-r5 Delcuve, 2008, Mitotic partitioning of transcription factors, J Cell Biochem, 105, 1, 10.1002/jcb.21806 Marenduzzo, 2009, Topological and entropic repulsion in biopolymers, J Stat Mech, L09002, 10.1088/1742-5468/2009/09/L09002 Song, 2007, A positive role for NLI/Ldb1 in long-range beta-globin locus control region function, Mol Cell, 28, 810, 10.1016/j.molcel.2007.09.025 Bulger, 1999, Looping versus linking: toward a model for long-distance gene activation, Genes Dev, 13, 2465, 10.1101/gad.13.19.2465 Alvarez, 2003, Context-dependent transcription: all politics is local, Gene, 313, 43, 10.1016/S0378-1119(03)00627-9 Snow KJ, Wright SM, Woo Y, Titus LC, Mills KD, Shopland LS. Nuclear positioning, higher-order folding, and gene expression of Mmu15 sequences are refractory to chromosomal translocation (2010). doi:10.1007/s00412-010-0290-9. Mateos-Langerak, 2009, Spatially confined folding of chromatin in the interphase nucleus, Proc Natl Acad Sci USA, 106, 3812, 10.1073/pnas.0809501106 Goetze, 2007, The three-dimensional structure of human interphase chromosomes is related to the transcriptome map, Mol Cell Biol, 27, 4475, 10.1128/MCB.00208-07 Goetze, 2007, Three-dimensional genome organization in interphase and its relation to genome function, Semin Cell Dev Biol, 18, 707, 10.1016/j.semcdb.2007.08.007 Fullwood, 2009, An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, 462, 58, 10.1038/nature08497 Ragoczy, 2010, Getting connected in the globin interactome, Nat Genet, 42, 16, 10.1038/ng0110-16 Branco, 2006, Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol, 4, e138, 10.1371/journal.pbio.0040138 CCremer, 2010, Chromosome territories, Cold Spring Harbor Perspect Biol, 2, a003889, 10.1101/cshperspect.a003889 RRosa, 2008, Structure and dynamics of interphase chromosomes, PLoS Comput Biol, 4, e1000153, 10.1371/journal.pcbi.1000153 Shopland, 2006, Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence, J Cell Biol, 174, 27, 10.1083/jcb.200603083 Goetze, 2007, The three-dimensional structure of human interphase chromosomes is related to the transcriptome map, Mol Cell Biol, 27, 4475, 10.1128/MCB.00208-07