Physical layer security over fading wiretap channels through classic coded transmissions with finite block length and discrete modulation

Physical Communication - Tập 37 - Trang 100829 - 2019
Marco Baldi1, Nicola Maturo2, Giacomo Ricciutelli3, Franco Chiaraluce1
1Dipartimento di Ingegneria dell׳Informazione, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
2Interdisciplinary Centre for Security, Reliability and Trust, Université du Luxembourg, 29, avenue JF Kennedy, L-1855, Luxembourg
3Gitronica S.p.A., Via Virgilio Guzzini 12, I-62010 Montelupone, Italy

Tài liệu tham khảo

Wyner, 1975, The wire-tap channel, Bell Syst. Tech. J., 54, 1355, 10.1002/j.1538-7305.1975.tb02040.x Harrison, 2013, Coding for secrecy, IEEE Signal Process. Mag., 30, 41, 10.1109/MSP.2013.2265141 Baldi, 2014, Secrecy transmission on parallel channels: Theoretical limits and performance of practical codes, IEEE Trans. Inf. Forensics Secur., 9, 1765, 10.1109/TIFS.2014.2348915 Wong, 2011, Secret-sharing LDPC codes for the BPSK-constrained Gaussian wiretap channel, IEEE Trans. Inf. Forensics Secur., 6, 551, 10.1109/TIFS.2011.2139208 Durisi, 2016, Towards massive, ultra-reliable, and low-latency wireless communication with short packets, Proc. IEEE, 104, 1711, 10.1109/JPROC.2016.2537298 Wickramasooriya, 2013, Comparison of equivocation rate of finite-length codes for the wiretap channel Bloch, 2015, Error-control coding for physical-layer secrecy, Proc. IEEE, 103, 1725, 10.1109/JPROC.2015.2463678 Cuff, 2010, A framework for partial secrecy Bellare, 2012, Semantic security for the wiretap channel, vol. 7417, 294 Rivest, 1997, All-or-nothing encryption and the package transform, vol. 1267, 210 Boyko, 1999, On the security properties of OAEP as an all-or-nothing transform, vol. 1666, 503 Liu, 2017, Physical layer security for next generation wireless networks: Theories, technologies, and challenges, IEEE Commun. Surv. Tutor., 19, 347, 10.1109/COMST.2016.2598968 Csiszár, 1996, Almost independence and secrecy capacity, Probl. Inform. Transm., 32, 40 Bloch, 2013, Strong secrecy from channel resolvability, IEEE Trans. Inform. Theory, 59, 8077, 10.1109/TIT.2013.2283722 Gopala, 2008, On the secrecy capacity of fading channel, IEEE Trans. Inform. Theory, 54, 4687, 10.1109/TIT.2008.928990 Liang, 2008, Secure communications over fading channels, IEEE Trans. Inform. Theory, 54, 2470, 10.1109/TIT.2008.921678 Renna, 2012, Physical layer secrecy for OFDM transmissions over fading channels, IEEE Trans. Inf. Forensics Secur., 7, 1354, 10.1109/TIFS.2012.2195491 Zhang, 2017, Secure transmission over the wiretap channel using polar codes and artificial noise, IET Commun., 11, 377, 10.1049/iet-com.2016.0429 Aghdam, 2017, Transmit signal design for MIMO wiretap channels with statistical CSI and arbitrary inputs, 1 Aghdam, 2017, Joint precoder and artificial noise design for MIMO wiretap channels with finite-alphabet inputs based on the cut-off rate, IEEE Trans. Wirel. Commun., 16, 3913, 10.1109/TWC.2017.2690279 Aghdam, 2019, An overview of physical layer security with finite-alphabet signaling, IEEE Commun. Surv. Tutor., 21, 1829, 10.1109/COMST.2018.2880421 He, 2016, On secrecy metrics for physical layer security over quasi-static fading channels, IEEE Trans. Wirel. Commun., 15, 6913, 10.1109/TWC.2016.2593445 Klinc, 2009, LDPC codes for physical layer security, 1 Klinc, 2009, LDPC codes for the Gaussian wiretap channel, 95 Kwak, 2009, Physical layer security with Yarg code, 43 Klinc, 2011, LDPC codes for the Gaussian wiretap channel, IEEE Trans. Inf. Forensics Secur., 6, 532, 10.1109/TIFS.2011.2134093 Zhang, 2014, Polar-LDPC concatenated coding for the AWGN wiretap channel, IEEE Commun. Lett., 18, 1683, 10.1109/LCOMM.2014.2353811 Lu, 2014, A USRP implementation of wiretap lattice codes, 316 Baldi, 2012, Coding with scrambling, concatenation, and HARQ for the AWGN wire-tap channel: A security gap analysis, IEEE Trans. Inf. Forensics Secur., 7, 883, 10.1109/TIFS.2012.2187515 Baldi, 2011, Increasing physical layer security through scrambled codes and ARQ Baldi, 2010, Non-systematic codes for physical layer security Almeida, 2013, Random puncturing for secrecy, 303 Kwon, 2016, Pre-coded LDPC coding for physical layer security, EURASIP J. Wireless Commun. Networking, 2016, 283, 10.1186/s13638-016-0761-7 Kim, 2016, BER-based physical layer security with finite codelength: Combining strong converse and error amplification, IEEE Trans. Commun., 64, 3844, 10.1109/TCOMM.2016.2591530 Vilela, 2016, Interleaved concatenated coding for secrecy in the finite blocklength regime, IEEE Signal Process. Lett., 23, 356, 10.1109/LSP.2015.2511821 Harrison, 2018, Analysis of short blocklength codes for secrecy, EURASIP J. Wireless Commun. Networking, 2018, 255, 10.1186/s13638-018-1276-1 Nooraiepour, 2017, Randomized convolutional codes for the wiretap channel, IEEE Trans. Commun., 65, 3442 Nooraiepour, 2018, Randomized serially concatenated LDGM codes for the Gaussian wiretap channel, IEEE Commun. Lett., 22, 680, 10.1109/LCOMM.2018.2789346 Nooraiepour, 2017, Randomized turbo codes for the wiretap channel, 1 Güvenkaya, 2017, On physical-layer concepts and metrics in secure signal transmission, Phys. Commun., 25, 14, 10.1016/j.phycom.2017.08.011 Tyagi, 2014, Explicit capacity-achieving coding scheme for the Gaussian wiretap channel, 956 Mahdavifar, 2011, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inform. Theory, 57, 6428, 10.1109/TIT.2011.2162275 Koyluoglu, 2012, Polar coding for secure transmission and key agreement, IEEE Trans. Inf. Forensics Secur., 7, 1472, 10.1109/TIFS.2012.2207382 Hayashi, 2010, Construction of wiretap codes from ordinary channels codes, 2538 Maturo, 2013, Security gap assessment for the fast fading wiretap channel Baldi, 2013, A tight estimation of the security gap over the fast fading wiretap channel, 143 Baldi, 2013, A practical viewpoint on the performance of LDPC codes over the fast Rayleigh fading wire-tap channel Baldi, 2015, Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel, 446 Baldi, 2016, Performance analysis of transmission over AWGN wiretap channels with practical codes, 53 Stinson, 2001, Something about all or nothing (transforms), Des. Codes Cryptogr., 22, 133, 10.1023/A:1008304703074 Stüber, 2011 Tse, 2005 Baldi, 2013, A physical layer secured key distribution technique for IEEE 802.11g wireless networks, IEEE Wirel. Commun. Lett., 2, 183, 10.1109/WCL.2012.122612.120787 Knopp, 2000, On coding for block fading channels, IEEE Trans. Inform. Theory, 46, 189, 10.1109/18.817517 Zummo, 2003 Snow, 2007, Error rate analysis for coded multicarrier systems over quasi-static fading channels, IEEE Trans. Commun., 55, 1736, 10.1109/TCOMM.2007.904390 Valembois, 2004, Sphere-packing bounds revisited for moderate block lengths, IEEE Trans. Inform. Theory, 50, 2998, 10.1109/TIT.2004.838090 Maurer, 2000, Information-theoretic key agreement: From weak to strong secrecy for free, vol. 1807, 351 Fossorier, 1995, Soft-decision decoding of linear block codes based on ordered statistics, IEEE Trans. Inform. Theory, 41, 1379, 10.1109/18.412683 Wu, 2007, Soft-decision decoding using ordered recodings on the most reliable basis, IEEE Trans. Inform. Theory, 53, 829, 10.1109/TIT.2006.889699 Kabat, 2007, New approach to order statistics decoding of long linear block codes, 1467 IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendement 4: FurtheR Higher Data Rate Extension in the 2.4 GHz Band (Jun. 2003).