Physical layer security over fading wiretap channels through classic coded transmissions with finite block length and discrete modulation
Tài liệu tham khảo
Wyner, 1975, The wire-tap channel, Bell Syst. Tech. J., 54, 1355, 10.1002/j.1538-7305.1975.tb02040.x
Harrison, 2013, Coding for secrecy, IEEE Signal Process. Mag., 30, 41, 10.1109/MSP.2013.2265141
Baldi, 2014, Secrecy transmission on parallel channels: Theoretical limits and performance of practical codes, IEEE Trans. Inf. Forensics Secur., 9, 1765, 10.1109/TIFS.2014.2348915
Wong, 2011, Secret-sharing LDPC codes for the BPSK-constrained Gaussian wiretap channel, IEEE Trans. Inf. Forensics Secur., 6, 551, 10.1109/TIFS.2011.2139208
Durisi, 2016, Towards massive, ultra-reliable, and low-latency wireless communication with short packets, Proc. IEEE, 104, 1711, 10.1109/JPROC.2016.2537298
Wickramasooriya, 2013, Comparison of equivocation rate of finite-length codes for the wiretap channel
Bloch, 2015, Error-control coding for physical-layer secrecy, Proc. IEEE, 103, 1725, 10.1109/JPROC.2015.2463678
Cuff, 2010, A framework for partial secrecy
Bellare, 2012, Semantic security for the wiretap channel, vol. 7417, 294
Rivest, 1997, All-or-nothing encryption and the package transform, vol. 1267, 210
Boyko, 1999, On the security properties of OAEP as an all-or-nothing transform, vol. 1666, 503
Liu, 2017, Physical layer security for next generation wireless networks: Theories, technologies, and challenges, IEEE Commun. Surv. Tutor., 19, 347, 10.1109/COMST.2016.2598968
Csiszár, 1996, Almost independence and secrecy capacity, Probl. Inform. Transm., 32, 40
Bloch, 2013, Strong secrecy from channel resolvability, IEEE Trans. Inform. Theory, 59, 8077, 10.1109/TIT.2013.2283722
Gopala, 2008, On the secrecy capacity of fading channel, IEEE Trans. Inform. Theory, 54, 4687, 10.1109/TIT.2008.928990
Liang, 2008, Secure communications over fading channels, IEEE Trans. Inform. Theory, 54, 2470, 10.1109/TIT.2008.921678
Renna, 2012, Physical layer secrecy for OFDM transmissions over fading channels, IEEE Trans. Inf. Forensics Secur., 7, 1354, 10.1109/TIFS.2012.2195491
Zhang, 2017, Secure transmission over the wiretap channel using polar codes and artificial noise, IET Commun., 11, 377, 10.1049/iet-com.2016.0429
Aghdam, 2017, Transmit signal design for MIMO wiretap channels with statistical CSI and arbitrary inputs, 1
Aghdam, 2017, Joint precoder and artificial noise design for MIMO wiretap channels with finite-alphabet inputs based on the cut-off rate, IEEE Trans. Wirel. Commun., 16, 3913, 10.1109/TWC.2017.2690279
Aghdam, 2019, An overview of physical layer security with finite-alphabet signaling, IEEE Commun. Surv. Tutor., 21, 1829, 10.1109/COMST.2018.2880421
He, 2016, On secrecy metrics for physical layer security over quasi-static fading channels, IEEE Trans. Wirel. Commun., 15, 6913, 10.1109/TWC.2016.2593445
Klinc, 2009, LDPC codes for physical layer security, 1
Klinc, 2009, LDPC codes for the Gaussian wiretap channel, 95
Kwak, 2009, Physical layer security with Yarg code, 43
Klinc, 2011, LDPC codes for the Gaussian wiretap channel, IEEE Trans. Inf. Forensics Secur., 6, 532, 10.1109/TIFS.2011.2134093
Zhang, 2014, Polar-LDPC concatenated coding for the AWGN wiretap channel, IEEE Commun. Lett., 18, 1683, 10.1109/LCOMM.2014.2353811
Lu, 2014, A USRP implementation of wiretap lattice codes, 316
Baldi, 2012, Coding with scrambling, concatenation, and HARQ for the AWGN wire-tap channel: A security gap analysis, IEEE Trans. Inf. Forensics Secur., 7, 883, 10.1109/TIFS.2012.2187515
Baldi, 2011, Increasing physical layer security through scrambled codes and ARQ
Baldi, 2010, Non-systematic codes for physical layer security
Almeida, 2013, Random puncturing for secrecy, 303
Kwon, 2016, Pre-coded LDPC coding for physical layer security, EURASIP J. Wireless Commun. Networking, 2016, 283, 10.1186/s13638-016-0761-7
Kim, 2016, BER-based physical layer security with finite codelength: Combining strong converse and error amplification, IEEE Trans. Commun., 64, 3844, 10.1109/TCOMM.2016.2591530
Vilela, 2016, Interleaved concatenated coding for secrecy in the finite blocklength regime, IEEE Signal Process. Lett., 23, 356, 10.1109/LSP.2015.2511821
Harrison, 2018, Analysis of short blocklength codes for secrecy, EURASIP J. Wireless Commun. Networking, 2018, 255, 10.1186/s13638-018-1276-1
Nooraiepour, 2017, Randomized convolutional codes for the wiretap channel, IEEE Trans. Commun., 65, 3442
Nooraiepour, 2018, Randomized serially concatenated LDGM codes for the Gaussian wiretap channel, IEEE Commun. Lett., 22, 680, 10.1109/LCOMM.2018.2789346
Nooraiepour, 2017, Randomized turbo codes for the wiretap channel, 1
Güvenkaya, 2017, On physical-layer concepts and metrics in secure signal transmission, Phys. Commun., 25, 14, 10.1016/j.phycom.2017.08.011
Tyagi, 2014, Explicit capacity-achieving coding scheme for the Gaussian wiretap channel, 956
Mahdavifar, 2011, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inform. Theory, 57, 6428, 10.1109/TIT.2011.2162275
Koyluoglu, 2012, Polar coding for secure transmission and key agreement, IEEE Trans. Inf. Forensics Secur., 7, 1472, 10.1109/TIFS.2012.2207382
Hayashi, 2010, Construction of wiretap codes from ordinary channels codes, 2538
Maturo, 2013, Security gap assessment for the fast fading wiretap channel
Baldi, 2013, A tight estimation of the security gap over the fast fading wiretap channel, 143
Baldi, 2013, A practical viewpoint on the performance of LDPC codes over the fast Rayleigh fading wire-tap channel
Baldi, 2015, Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel, 446
Baldi, 2016, Performance analysis of transmission over AWGN wiretap channels with practical codes, 53
Stinson, 2001, Something about all or nothing (transforms), Des. Codes Cryptogr., 22, 133, 10.1023/A:1008304703074
Stüber, 2011
Tse, 2005
Baldi, 2013, A physical layer secured key distribution technique for IEEE 802.11g wireless networks, IEEE Wirel. Commun. Lett., 2, 183, 10.1109/WCL.2012.122612.120787
Knopp, 2000, On coding for block fading channels, IEEE Trans. Inform. Theory, 46, 189, 10.1109/18.817517
Zummo, 2003
Snow, 2007, Error rate analysis for coded multicarrier systems over quasi-static fading channels, IEEE Trans. Commun., 55, 1736, 10.1109/TCOMM.2007.904390
Valembois, 2004, Sphere-packing bounds revisited for moderate block lengths, IEEE Trans. Inform. Theory, 50, 2998, 10.1109/TIT.2004.838090
Maurer, 2000, Information-theoretic key agreement: From weak to strong secrecy for free, vol. 1807, 351
Fossorier, 1995, Soft-decision decoding of linear block codes based on ordered statistics, IEEE Trans. Inform. Theory, 41, 1379, 10.1109/18.412683
Wu, 2007, Soft-decision decoding using ordered recodings on the most reliable basis, IEEE Trans. Inform. Theory, 53, 829, 10.1109/TIT.2006.889699
Kabat, 2007, New approach to order statistics decoding of long linear block codes, 1467
IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendement 4: FurtheR Higher Data Rate Extension in the 2.4 GHz Band (Jun. 2003).