Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems
Tóm tắt
Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Tài liệu tham khảo
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI (2018) State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv. 36(7):1855–1869. https://doi.org/10.1016/j.biotechadv.2018.07.004
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI (2019) Chasing Chimeras – The elusive stable chondrogenic phenotype. Biomaterials 192:199–225. https://doi.org/10.1016/j.biomaterials.2018.11.014
Gonçalves GAR, de MA PR (2017) Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 15(3):369–375. https://doi.org/10.1590/s1679-45082017rb4024
Shieh PB, Bönnemann CG, Müller-Felber W, Blaschek A, Dowling JJ, Kuntz NL, Seferian AM (2020) Re: “Moving forward after two deaths in a gene therapy trial of myotubular myopathy” by Wilson and Flotte. Hum Gene Ther 31(15-16):787. https://doi.org/10.1089/hum.2020.217
Evans CH, Ghivizzani SC, Robbins PD (2008) Arthritis gene therapy’s first death. Arthritis Res Ther 10(3):110. https://doi.org/10.1186/ar2411
Sibbald B (2001) Death but one unintended consequence of gene-therapy trial. CMAJ 164:1612
Durymanov M, Reineke J (2018) Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol. 9:971. https://doi.org/10.3389/fphar.2018.00971
Graceffa V (2021) Therapeutic potential of reactive oxygen species: state of the art and recent advances. SLAS Technol 26(2):140–158. https://doi.org/10.1177/2472630320977450
Graceffa V, Zeugolis DIDI (2019) Macromolecular crowding as a means to assess the effectiveness of chondrogenic media. J Tissue Eng Regen Med 13(2):217–231. https://doi.org/10.1002/term.2783
Treiser MD, Liu E, Dubin RA, Sung H-J, Kohn J, Moghe PV (2007) Profiling cell-biomaterial interactions via cell-based fluororeporter imaging. Biotechniques 43(3):361–368. https://doi.org/10.2144/000112533
Kang KB, Lawrence BD, Gao XR, Luo Y, Zhou Q, Liu A, Guaiquil VH, Rosenblatt MI (2017) Micro- and nanoscale topographies on silk regulate gene expression of human corneal epithelial cells. Invest Ophthalmol Vis Sci 58(14):6388–6398. https://doi.org/10.1167/iovs.17-22213
Tsygankova OM, Keen JH (2019) A unique role for clathrin light chain A in cell spreading and migration. J Cell Sci 132:jcs224030
Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G, Vassilopoulos S, Montagnac G (2017) Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356:eaal4713
Ledo AM, Vining KH, Alonso MJ, Garcia-Fuentes M, Mooney DJ (2020) Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater 110:153–163. https://doi.org/10.1016/j.actbio.2020.04.027
Lei P, Padmashali RM, Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30(22):3790–3799. https://doi.org/10.1016/j.biomaterials.2009.03.049
Abbah SA, Thomas D, Browne S, O’Brien T, Pandit A, Zeugolis DI (2016) Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Sci Rep. 6(1). https://doi.org/10.1038/srep20922
Khalil AS, Yu X, Dang PN, Alsberg E, Murphy WL (2019) A microparticle approach for non-viral gene delivery within 3D human mesenchymal stromal cell aggregates. Acta Biomater 95:408–417. https://doi.org/10.1016/j.actbio.2019.04.038
des Rieux A, Shikanov A, Shea LD (2009) Fibrin hydrogels for non-viral vector delivery in vitro. J Control Release 136:148–154, 2, doi: https://doi.org/10.1016/j.jconrel.2009.02.004
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z (2017) Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 52(4):355–380. https://doi.org/10.1080/10409238.2017.1304354
Koirala A, Conley SM, Makkia R, Liu Z, Cooper MJ, Sparrow JR, Naash MI (2013) Persistence of non-viral vector mediated RPE65 expression: case for viability as a gene transfer therapy for RPE-based diseases. J Control Release 172(3):745–752. https://doi.org/10.1016/j.jconrel.2013.08.299
Ochiya T, Takahama Y, Nagahara S, Sumita Y, Hisada A, Itoh H, Nagai Y, Terada M (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 5(6):707–710. https://doi.org/10.1038/9560
Jang J-H, Rives CB, Shea LD (2005) Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 12(3):475–483. https://doi.org/10.1016/j.ymthe.2005.03.036
Salvay DM, Zelivyanskaya M, Shea LD (2010) Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther 17(9):1134–1141. https://doi.org/10.1038/gt.2010.79
Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1(6):363–369. https://doi.org/10.1093/hmg/1.6.363
Koirala A, Makkia RS, Conley SM, Cooper MJ, Naash MI (2013) S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA. Hum Mol Genet 22(8):1632–1642. https://doi.org/10.1093/hmg/ddt013
Kopatz I, Remy J-S, Behr J-P (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6(7):769–776. https://doi.org/10.1002/jgm.558
Bengali Z, Rea JC, Gibly RF, Shea LD (2009) Efficacy of immobilized polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol Bioeng 102(6):1679–1691. https://doi.org/10.1002/bit.22212
Hattori Y (2017) Progress in the development of lipoplex and polyplex modified with anionic polymer for efficient gene delivery. J Genet Med Gene Ther 1(1):3–18. https://doi.org/10.29328/journal.jgmgt.1001002
Grijalvo S, Puras G, Zárate J, Sainz-Ramos M, Qtaish NAL, López T, Mashal M, Attia N, Díaz D, Pons R, Fernández E, Pedraz JL, Eritja R (2019) Cationic niosomes as non-viral vehicles for nucleic acids: challenges and opportunities in gene delivery. Pharmaceutics 11(2):50. https://doi.org/10.3390/pharmaceutics11020050
Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T (2016) Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016:7372306
Gonzalez-Fernandez T, Sathy BN, Hobbs C, Cunniffe GM, McCarthy HO, Dunne NJ, Nicolosi V, O’Brien FJ, Kelly DJ (2017) Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater 55:226–238. https://doi.org/10.1016/j.actbio.2017.03.044
Kumari S, MGS, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20(3):256–275. https://doi.org/10.1038/cr.2010.19
Ni R, Feng R, Chau Y (2019) Synthetic approaches for nucleic acid delivery: choosing the right carriers. Life (Basel) 9:59. https://doi.org/10.3390/life9030059
Echarri A, Del Pozo MA (2015) Caveolae – mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci 128:2747 LP–2742758
Li L, Wan T, Wan M, Liu B, Cheng R, Zhang R (2015) The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol Int 39(5):531–539. https://doi.org/10.1002/cbin.10424
Tejeda-Muñoz N, Albrecht LV, Bui MH, De Robertis EM (2019) Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. Proc Natl Acad Sci 116:10402 LP–10410411
von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M (2006) The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther 14(5):745–753. https://doi.org/10.1016/j.ymthe.2006.07.006
Gao C, Li Z, Zou J, Cheng J, Jiang K, Liu C, Gu G, Tao W, Song J (2020) Mechanical effect on gene transfection based on dielectric elastomer actuator. ACS Appl Bio Mater 3(5):2617–2625. https://doi.org/10.1021/acsabm.9b01199
Zuhorn IS, Kalicharan R, Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277(20):18021–18028. https://doi.org/10.1074/jbc.M111257200
Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G (2012) Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm 9(2):334–340. https://doi.org/10.1021/mp200374e
Lazebnik M, Keswani RK, Pack DW (2016) Endocytic transport of polyplex and lipoplex siRNA vectors in HeLa cells. Pharm Res 33(12):2999–3011. https://doi.org/10.1007/s11095-016-2022-1
Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G (2012) Transfection efficiency boost of cholesterol-containing lipoplexes. Biochim Biophys Acta 1818(9):2335–2343. https://doi.org/10.1016/j.bbamem.2012.05.017
Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN, Braeckmans K (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18(3):561–569. https://doi.org/10.1038/mt.2009.281
Rejman J, Bragonzi A, Conese M (2005) Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 12(3):468–474. https://doi.org/10.1016/j.ymthe.2005.03.038
Zhang X-X, Allen PG, Grinstaff M (2011) Macropinocytosis is the major pathway responsible for DNA transfection in CHO cells by a charge-reversal amphiphile. Mol Pharm 8(3):758–766. https://doi.org/10.1021/mp100366h
Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(1):159–169. https://doi.org/10.1042/bj20031253
Grosse S, Aron Y, Thévenot G, Monsigny M, Fajac I (2007) Cytoskeletal involvement in the cellular trafficking of plasmid/PEI derivative complexes. J Control Release 122(1):111–117. https://doi.org/10.1016/j.jconrel.2007.06.015
Coppola S, Cardarelli F, Pozzi D, Estrada LC, Digman MA, Gratton E, Bifone A, Marianecci C, Caracciolo G (2013) The role of cytoskeleton networks on lipid-mediated delivery of DNA. Ther Deliv 4(2):191–202. https://doi.org/10.4155/tde.12.151
Phuyal S, Farhan H (2019) Multifaceted Rho GTPase signaling at the endomembranes. Front. Cell Dev. Biol. 7:127. https://doi.org/10.3389/fcell.2019.00127
Hervé JC, Bourmeyster N (2015) Rho GTPases at the crossroad of signaling networks in mammals. Small GTPases 6(2):43–48. https://doi.org/10.1080/21541248.2015.1044811
Vaughan EE, Dean DA (2006) Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 13(2):422–428. https://doi.org/10.1016/j.ymthe.2005.10.004
Rosazza C, Escoffre J-M, Zumbusch A, Rols M-P (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther 19(5):913–921. https://doi.org/10.1038/mt.2010.303
Rosazza C, Deschout H, Buntz A, Braeckmans K, Rols M-P, Zumbusch A (2016) Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol Ther Nucleic Acids 5:e286–e286. https://doi.org/10.1038/mtna.2015.59
Kutsuzawa K, Tada S, Hossain S, Fukuda K, Maruyama K, Akiyama Y, Akaike T, Chowdhury EH (2009) Disrupting actin filaments promotes efficient transfection of a leukemia cell line using cell adhesive protein-embedded carbonate apatite particles. Anal Biochem 388(1):164–166. https://doi.org/10.1016/j.ab.2009.02.006
Alshehri A, Grabowska A, Stolnik S (2018) Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Sci Rep 8(1):3748. https://doi.org/10.1038/s41598-018-22166-3
Cardarelli F, Digiacomo L, Marchini C, Amici A, Salomone F, Fiume G, Rossetta A, Gratton E, Pozzi D, Caracciolo G (2016) The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci Rep 6(1):25879. https://doi.org/10.1038/srep25879
Qin B, Yuan X, Jiang M, Yin H, Luo Z, Zhang J, Zhu C, Li X, Shi Y, Luo L, Du Y, You J (2020) Targeting DNA to the endoplasmic reticulum efficiently enhances gene delivery and therapy. Nanoscale 12(35):18249–18262. https://doi.org/10.1039/D0NR03156A
Ramos-Murillo AI, Rodríguez E, Beltrán K, Ricaurte C, Camacho B, Salguero G, Godoy-Silva RD (2020) Efficient non-viral gene modification of mesenchymal stromal cells from umbilical cord Wharton’s jelly with polyethylenimine. Pharmaceutics 12(9). https://doi.org/10.3390/pharmaceutics12090896
Martens TF, Remaut K, Demeester J, De Smedt SC, Braeckmans K (2014) Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today 9(3):344–364. https://doi.org/10.1016/j.nantod.2014.04.011
Vermeulen LMP, De Smedt SC, Remaut K, Braeckmans K (2018) The proton sponge hypothesis: Fable or fact? Eur J Pharm Biopharm 129:184–190. https://doi.org/10.1016/j.ejpb.2018.05.034
Huang G, Chen Q, Wu W, Wang J, Chu PK, Bai H, Tang G (2020) Reconstructed chitosan with alkylamine for enhanced gene delivery by promoting endosomal escape. Carbohydr Polym 227:115339. https://doi.org/10.1016/j.carbpol.2019.115339
Kanthamneni N, Yung B, Lee RJ (2016) Effect of Eudragit on in vitro transfection efficiency of PEI–DNA complexes. Anticancer Res 36:81 LP–81 85
Lacraz G, Figeac F, Movassat J, Kassis N, Coulaud J, Galinier A, Leloup C, Bailbé D, Homo-Delarche F, Portha B (2009) Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. Plos One 4(8):e6500. https://doi.org/10.1371/journal.pone.0006500
Guillem V, Aliño S (2004) Transfection pathways of nonspecific and targeted PEI-polyplexes Review Article. Gene Ther Mol Biol 8:369–384
Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/nmat2442
Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL (2013) The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21(1):149–157. https://doi.org/10.1038/mt.2012.185
Godbey WT, Barry MA, Saggau P, Wu KK, Mikos AG (2000) Poly(ethylenimine)-mediated transfection: A new paradigm for gene delivery. J Biomed Mater Res 51(3):321–328. https://doi.org/10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R
Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Hennink WE (2004) Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules 5(1):32–39. https://doi.org/10.1021/bm034041+
Forrest ML, Meister GE, Koerber JT, Pack DW (2004) Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm Res 21(2):365–371. https://doi.org/10.1023/B:PHAM.0000016251.42392.1e
Sahni A, Qian Z, Pei D (2020) Cell-penetrating peptides escape the endosome by inducing vesicle budding and collapse. ACS Chem Biol 15(9):2485–2492. https://doi.org/10.1021/acschembio.0c00478
van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA (2006) The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm Res 23(3):447–459. https://doi.org/10.1007/s11095-005-9445-4
Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7(5):401–407. https://doi.org/10.1038/sj.gt.3301102
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K (2012) Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 64(1):78–94. https://doi.org/10.1016/j.addr.2011.11.012
Remaut K, Symens N, Lucas B, Demeester J, De Smedt SC (2014) Cell division responsive peptides for optimized plasmid DNA delivery: The mitotic window of opportunity? J Control Release 179:1–9. https://doi.org/10.1016/j.jconrel.2014.01.013
Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273(13):7507–7511. https://doi.org/10.1074/jbc.273.13.7507
Farrell L-L, Pepin J, Kucharski C, Lin X, Xu Z, Uludag H (2007) A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV 65(3):388–397. https://doi.org/10.1016/j.ejpb.2006.11.026
Symens N, Walczak R, Demeester J, Mattaj I, De Smedt SC, Remaut K (2011) Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol Pharm 8(5):1757–1766. https://doi.org/10.1021/mp200120v
Remaut K, Sanders NN, Fayazpour F, Demeester J, De Smedt SC (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release 115(3):335–343. https://doi.org/10.1016/j.jconrel.2006.08.009
Wang Y, You C, Wei R, Zu J, Song C, Li J, Yan J (2017) Modification of human umbilical cord blood stem cells using polyethylenimine combined with modified TAT peptide to enhance BMP-2 production. Biomed Res Int 2017:2971413
Yamano S, Dai J, Hanatani S, Haku K, Yamanaka T, Ishioka M, Takayama T, Yuvienco C, Khapli S, Moursi AM, Montclare JK (2014) Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials 35(5):1705–1715. https://doi.org/10.1016/j.biomaterials.2013.11.012
Bathori G, Cervenak L, Karadi I (2004) Caveolae--an alternative endocytotic pathway for targeted drug delivery. Crit Rev Ther Drug Carrier Syst 21(2):67–95. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i2.10
Le PU, Nabi IR (2003) Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 116:1059 LP–1051071
Reilly MJ, Larsen JD, Sullivan MO (2012) Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus. Mol Pharm 9(5):1280–1290. https://doi.org/10.1021/mp200583d
Hwang J, Sullivan MO, Kiick KL (2020) Targeted drug delivery via the use of ECM-mimetic materials. Front. Bioeng. Biotechnol. 8:69. https://doi.org/10.3389/fbioe.2020.00069
Manzanares D, Ceña V (2020) Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12(4). https://doi.org/10.3390/pharmaceutics12040371
Marmiroli M, Maestri E, Pagano L, Robinson BH, Ruotolo R, Marmiroli N (2019) Chapter 8 - Toxicology assessment of engineered nanomaterials: innovation and tradition. In: Marmiroli N, White JC, Song JBT-E to EN in the E (eds) Micro and Nano Technologies. Elsevier, pp 209–234
Ruseska I, Zimmer A (2020) Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 11:101–123. https://doi.org/10.3762/bjnano.11.10
Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, Agostini M, Salvatore F, Tasciotti E (2015) Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond) 10(12):1923–1940. https://doi.org/10.2217/nnm.15.39
Yuan X, Qin B, Yin H, Shi Y, Jiang M, Luo L, Luo Z, Zhang J, Li X, Zhu C, Du Y, You J (2020) Virus-like nonvirus cationic liposome for efficient gene delivery via endoplasmic reticulum pathway. ACS Cent Sci 6(2):174–188. https://doi.org/10.1021/acscentsci.9b01052
Pavelka M, Roth J (2010) Nuclear envelope and rough endoplasmic reticulum. In: Springer (ed) Functional Ultrastructure. Vienna, pp 30–31
Truong NF, Lesher-Pérez SC, Kurt E, Segura T (2019) Pathways governing polyethylenimine polyplex transfection in microporous annealed particle scaffolds. Bioconjug Chem 30(2):476–486. https://doi.org/10.1021/acs.bioconjchem.8b00696
Urello MA, Kiick KL, Sullivan MO (2017) ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen. Acta Biomater 62:167–178. https://doi.org/10.1016/j.actbio.2017.08.038
Hsu S, Ho T-T, Tseng T-C (2012) Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 33(14):3639–3650. https://doi.org/10.1016/j.biomaterials.2012.02.005
Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T (2014) Immobilization techniques for microarray: challenges and applications. Sensors (Basel) 14(12):22208–22229. https://doi.org/10.3390/s141222208
Jang J-H, Bengali Z, Houchin TL, Shea LD (2006) Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery. J Biomed Mater Res A 77(1):50–58. https://doi.org/10.1002/jbm.a.30643
Singh V, Zharnikov M, Gulino A, Gupta T (2011) DNA immobilization, delivery and cleavage on solid supports. J Mater Chem 21(29):10602–10618. https://doi.org/10.1039/c0jm04359a
Jang J-H, Schaffer DV, Shea LD (2011) Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther 19(8):1407–1415. https://doi.org/10.1038/mt.2011.111
Gower RM, Shea LD (2013) Biomaterial scaffolds for controlled, localized gene delivery of regenerative factors. Adv wound care 2(3):100–106. https://doi.org/10.1089/wound.2011.0325
Tokatlian T, Cam C, Segura T (2015) Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthc Mater 4(7):1084–1091. https://doi.org/10.1002/adhm.201400783
Shepard JA, Virani FR, Goodman AG, Gossett TD, Shin S, Shea LD (2012) Hydrogel macroporosity and the prolongation of transgene expression and the enhancement of angiogenesis. Biomaterials 33(30):7412–7421. https://doi.org/10.1016/j.biomaterials.2012.06.081
Tokatlian T, Cam C, Segura T (2014) Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice. Biomaterials 35(2):825–835. https://doi.org/10.1016/j.biomaterials.2013.10.014
Ehsanipour A, Nguyen T, Aboufadel T, Sathialingam M, Cox P, Xiao W, Walthers CM, Seidlits SK (2019) Injectable, hyaluronic acid-based scaffolds with macroporous architecture for gene delivery. Cell Mol Bioeng 12(5):399–413. https://doi.org/10.1007/s12195-019-00593-0
Dadsetan M, Szatkowski JP, Shogren KL, Yaszemski MJ, Maran A (2009) Hydrogel-mediated DNA delivery confers estrogenic response in nonresponsive osteoblast cells. J Biomed Mater Res A 91(4):1170–1177. https://doi.org/10.1002/jbm.a.32291
Chalanqui MJ, Pentlavalli S, McCrudden C, Chambers P, Ziminska M, Dunne N, McCarthy HO (2019) Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Mater Sci Eng C 95:409–421. https://doi.org/10.1016/j.msec.2017.09.003
Pannier AK, Segura T (2013) Surface- and hydrogel-mediated delivery of nucleic acid nanoparticles. Methods Mol Biol 948:149–169. https://doi.org/10.1007/978-1-62703-140-0_11
Siegman S, Truong NF, Segura T (2015) Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomater 28:45–54. https://doi.org/10.1016/j.actbio.2015.09.020
Lei Y, Rahim M, Ng Q, Segura T (2011) Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release 153(3):255–261. https://doi.org/10.1016/j.jconrel.2011.01.028
Jo A, Ringel-Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS, Allen IC, Davis RM (2020) Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid. J Nanobiotechnol 18(1):16. https://doi.org/10.1186/s12951-019-0564-1
Carthew J, Donderwinkel I, Shrestha S, Truong VX, Forsythe JS, Frith JE (2020) In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Acta Biomater 101:249–261. https://doi.org/10.1016/j.actbio.2019.11.016
Dave N, Chan MY, Huang P-JJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132(36):12668–12673. https://doi.org/10.1021/ja106098j
Fukunaka Y, Iwanaga K, Morimoto K, Kakemi M, Tabata Y (2002) Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Control Release 80(1-3):333–343. https://doi.org/10.1016/S0168-3659(02)00026-3
Balashanmugam MV, Nagarethinam S, Jagani H, Josyula VR, Alrohaimi A, Udupa N (2014) Preparation and characterization of novel PBAE/PLGA polymer blend microparticles for DNA vaccine delivery. Sci World J 2014:385135
Wang Z, Shen H, Song S, Zhang L, Chen W, Dai J, Zhang Z (2018) Graphene oxide incorporated PLGA nanofibrous scaffold for solid phase gene delivery into mesenchymal stem cells. J Nanosci Nanotechnol 18(4):2286–2293. https://doi.org/10.1166/jnn.2018.14362
Zandieh M, Hagar BM, Liu J (2020) Interfacing DNA and polydopamine nanoparticles and its applications. Part Part Syst Charact 37(11):2000208. https://doi.org/10.1002/ppsc.202000208
Urello MA, Kiick KL, Sullivan MO (2016) Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides. Bioeng Transl Med 1(2):207–219. https://doi.org/10.1002/btm2.10037
Bai L, Zhao J, Wang M, Feng Y, Ding J (2020) Matrix-metalloproteinase-responsive gene delivery surface for enhanced in situ endothelialization. ACS Appl Mater Interfaces 12(36):40121–40132. https://doi.org/10.1021/acsami.0c11971
Zhang H, Huang J-J, Wang J, Hu M, Chen X-C, Sun W, Ren K-F, Ji J (2019) Surface-mediated stimuli-responsive gene delivery based on breath figure film combined with matrix metalloproteinase-sensitive hydrogel. ACS Biomater Sci Eng 5(12):6610–6616. https://doi.org/10.1021/acsbiomaterials.9b01353
Lei Y, Segura T (2009) DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 30(2):254–265. https://doi.org/10.1016/j.biomaterials.2008.09.027
Liu Y, Zhao N, Xu F-J (2019) pH-responsive degradable dextran-quantum dot nanohybrids for enhanced gene delivery. ACS Appl Mater Interfaces 11(38):34707–34716. https://doi.org/10.1021/acsami.9b12198
Hu C-H, Zhang X-Z, Zhang L, Xu X-D, Zhuo R-X (2009) Temperature- and pH-sensitive hydrogels to immobilize heparin-modified PEI/DNA complexes for sustained gene delivery. J Mater Chem 19(47):8982–8989. https://doi.org/10.1039/b916310g
Madry H, Gao L, Rey-Rico A, Venkatesan JK, Müller-Brandt K, Cai X, Goebel L, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M (2020) Thermosensitive hydrogel based on PEO-PPO-PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv Mater 32:e1906508
Ryu J-Y, Won E-J, Lee HAR, Kim JH, Hui E, Kim HP, Yoon T-J (2020) Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials 232:119736. https://doi.org/10.1016/j.biomaterials.2019.119736
Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z (2019) Echogenic PEGylated PEI-loaded microbubble As efficient gene delivery system. Int J Nanomedicine 14:8923–8941. https://doi.org/10.2147/IJN.S217338
Yao L, Weng W, Cheng K, Wang L, Dong L, Lin J, Sheng K (2020) Novel platform for surface-mediated gene delivery assisted with visible-light illumination. ACS Appl Mater Interfaces 12(15):17290–17301. https://doi.org/10.1021/acsami.0c00511
Zhang H, Wang J, Hu M, Li B-C, Li H, Chen T-T, Ren K-F, Ji J, Jing Q-M, Fu G-S (2019) Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomater Sci 7(12):5177–5186. https://doi.org/10.1039/C9BM01284B
Villate-Beitia I, Truong NF, Gallego I, Zárate J, Puras G, Pedraz JL, Segura T (2018) Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery. RSC Adv 8(56):31934–31942. https://doi.org/10.1039/C8RA05125A
Saul JM, Linnes MP, Ratner BD, Giachelli CM, Pun SH (2007) Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials 28(31):4705–4716. https://doi.org/10.1016/j.biomaterials.2007.07.026
Zhang J, Sen A, Cho E, Lee JS, Webb K (2017) Poloxamine/fibrin hybrid hydrogels for non-viral gene delivery. J Tissue Eng Regen Med 11(1):246–255. https://doi.org/10.1002/term.1906
Delgado LM, Bayon Y, Pandit A, Zeugolis DI (2015) To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B Rev 21(3):298–313. https://doi.org/10.1089/ten.teb.2014.0290
Keeney M, Chung MT, Zielins ER, Paik KJ, McArdle A, Morrison SD, Ransom RC, Barbhaiya N, Atashroo D, Jacobson G, Zare RN, Longaker MT, Wan DC, Yang F (2016) Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J Biomed Mater Res A 104(8):2099–2107. https://doi.org/10.1002/jbm.a.35735
Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 120(3):233–241. https://doi.org/10.1016/j.jconrel.2007.04.015
Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T (2010) Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 31(34):9106–9116. https://doi.org/10.1016/j.biomaterials.2010.08.016
Avilés MO, Lin C-H, Zelivyanskaya M, Graham JG, Boehler RM, Messersmith PB, Shea LD (2010) The contribution of plasmid design and release to in vivo gene expression following delivery from cationic polymer modified scaffolds. Biomaterials 31(6):1140–1147. https://doi.org/10.1016/j.biomaterials.2009.10.035
Mantz A, Pannier AK (2019) Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery. Exp Biol Med (Maywood) 244(2):100–113. https://doi.org/10.1177/1535370218821060
Bengali Z, Shea LD (2005) Gene delivery by immobilization to cell-adhesive substrates. MRS Bull 30(9):659–662. https://doi.org/10.1557/mrs2005.193
Hu W-W, Ting J-C (2019) Gene immobilization on alginate/polycaprolactone fibers through electrophoretic deposition to promote in situ transfection efficiency and biocompatibility. Int J Biol Macromol 121:1337–1345. https://doi.org/10.1016/j.ijbiomac.2018.09.043
Hong CA, Son HY, Nam YS (2018) Layer-by-layer siRNA/poly(L-lysine) multilayers on polydopamine-coated surface for efficient cell adhesion and gene silencing. Sci Rep 8(1):7738. https://doi.org/10.1038/s41598-018-25655-7
Kim S-H, Yu SJ, Kim I, Choi J, Choi YH, Im SG, Hwang NS (2019) A biofunctionalized viral delivery patch for spatially defined transfection. Chem Commun (Camb) 55(16):2317–2320. https://doi.org/10.1039/C8CC09768B
Wang K, Bruce A, Mezan R, Kadiyala A, Wang L, Dawson J, Rojanasakul Y, Yang Y (2016) Nanotopographical modulation of cell function through nuclear deformation. ACS Appl Mater Interfaces 8(8):5082–5092. https://doi.org/10.1021/acsami.5b10531
Hamann A, Thomas AK, Kozisek T, Farris E, Lück S, Zhang Y, Pannier AK (2020) Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection. Exp Biol Med (Maywood) 245(7):606–619. https://doi.org/10.1177/1535370220913501
Papenburg BJ, Rodrigues ED, Wessling M, Stamatialis D (2010) Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter 6(18):4377–4388. https://doi.org/10.1039/b927207k
Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6):1299–1306. https://doi.org/10.1016/j.biomaterials.2009.10.037
Wang P-Y, Ding S, Sumer H, Wong RC-B, Kingshott P (2017) Heterogeneity of mesenchymal and pluripotent stem cell populations grown on nanogrooves and nanopillars. J Mater Chem B 5(39):7927–7938. https://doi.org/10.1039/C7TB01878A
Metavarayuth K, Sitasuwan P, Zhao X, Lin Y, Wang Q (2016) Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater Sci Eng 2(2):142–151. https://doi.org/10.1021/acsbiomaterials.5b00377
Kang M, Leal C (2016) Soft nanostructured films for actuated surface-based siRNA delivery. Adv Funct Mater 26(31):5610–5620. https://doi.org/10.1002/adfm.201600681
Yang Y, Wang X, Hu X, Kawazoe N, Yang Y, Chen G (2019) Influence of cell morphology on mesenchymal stem cell transfection. ACS Appl Mater Interfaces 11(2):1932–1941. https://doi.org/10.1021/acsami.8b20490
Wang P-Y, Lian Y-S, Chang R, Liao W-H, Chen W-S, Tsai W-B (2017) Modulation of PEI-mediated gene transfection through controlling cytoskeleton organization and nuclear morphology via nanogrooved topographies. ACS Biomater Sci Eng 3(12):3283–3291. https://doi.org/10.1021/acsbiomaterials.7b00617
Teo BKK, Goh S-H, Kustandi TS, Loh WW, Low HY, Yim EKF (2011) The effect of micro and nanotopography on endocytosis in drug and gene delivery systems. Biomaterials 32(36):9866–9875. https://doi.org/10.1016/j.biomaterials.2011.08.088
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R (2019) Cellular deformations induced by conical silicon nanowire arrays facilitate gene delivery. Small 15(47):1904819. https://doi.org/10.1002/smll.201904819
Elnathan R, Delalat B, Brodoceanu D, Alhmoud H, Harding FJ, Buehler K, Nelson A, Isa L, Kraus T, Voelcker NH (2015) Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv Funct Mater 25(46):7215–7225. https://doi.org/10.1002/adfm.201503465
Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129(23):7228–7229. https://doi.org/10.1021/ja071456k
Huang X, Li Z, Wu J, Hang Y, Wang H, Yuan L, Chen H (2019) Small addition of Zn(2+) in Ca(2+)@DNA results in elevated gene transfection by aminated PGMA-modified silicon nanowire arrays. J Mater Chem B 7(4):566–575. https://doi.org/10.1039/C8TB03045F
Chang R, Yan Q, Kingshott P, Tsai W-B, Wang P-Y (2020) Harnessing the perinuclear actin cap (pnAC) to influence nanocarrier trafficking and gene transfection efficiency in skeletal myoblasts using nanopillars. Acta Biomater 111:221–231. https://doi.org/10.1016/j.actbio.2020.05.015
Yang Y, Kulangara K, Sia J, Wang L, Leong KW (2011) Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab Chip 11(9):1638–1646. https://doi.org/10.1039/c0lc00736f
McKee CT, Raghunathan VK, Nealey PF, Russell P, Murphy CJ (2011) Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophys J 101(9):2139–2146. https://doi.org/10.1016/j.bpj.2011.09.042
Jean RP, Gray DS, Spector AA, Chen CS (2004) Characterization of the nuclear deformation caused by changes in endothelial cell shape. J Biomech Eng 126(5):552–558. https://doi.org/10.1115/1.1800559
Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R, Yoon M-H, Sutton A, Jorgolli M, Gertner RS, Gujral TS, MacBeath G, Yang EG, Park H (2010) Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci 107:1870 LP–1871875
Wang H, Pan J, Chen H, Yuan L (2016) Application of polyethylenimine-grafted silicon nanowire arrays for gene transfection. Methods Mol Biol 1445:279–287. https://doi.org/10.1007/978-1-4939-3718-9_18
Kunath K, Merdan T, Hegener O, Häberlein H, Kissel T (2003) Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med 5(7):588–599. https://doi.org/10.1002/jgm.382
Dhaliwal A, Lam J, Maldonado M, Lin C, Segura T (2012) Extracellular matrix modulates non-viral gene transfer to mouse mesenchymal stem cells. Soft Matter 8(5):1451–1459. https://doi.org/10.1039/C1SM06591B
Gojgini S, Tokatlian T, Segura T (2011) Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol Pharm 8(5):1582–1591. https://doi.org/10.1021/mp200171d
Shepard JA, Huang A, Shikanov A, Shea LD (2010) Balancing cell migration with matrix degradation enhances gene delivery to cells cultured three-dimensionally within hydrogels. J Control Release 146(1):128–135. https://doi.org/10.1016/j.jconrel.2010.04.032
Mantz A, Rosenthal A, Farris E, Kozisek T, Bittrich E, Nazari S, Schubert E, Schubert M, Stamm M, Uhlmann P, Pannier AK (2019) Free polyethylenimine enhances substrate-mediated gene delivery on titanium substrates modified with RGD-functionalized poly(acrylic acid) brushes. Front Chem 7:51. https://doi.org/10.3389/fchem.2019.00051
Tavano L, Muzzalupo R, Mauro L, Pellegrino M, Andò S, Picci N (2013) Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir 29(41):12638–12646. https://doi.org/10.1021/la4021383
Jiang H, Wang S, Zhou X, Wang L, Ye L, Zhou Z, Tang J, Liu X, Teng L, Shen Y (2018) New path to treating pancreatic cancer: TRAIL gene delivery targeting the fibroblast-enriched tumor microenvironment. J Control Release 286:254–263. https://doi.org/10.1016/j.jconrel.2018.07.047
Xu Z, Shen G, Xia X, Zhao X, Zhang P, Wu H, Guo Q, Qian Z, Wei Y, Liang S (2011) Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma. J Transl Med 9(1):46. https://doi.org/10.1186/1479-5876-9-46
Jones SK, Lizzio V, Merkel OM (2016) Folate receptor targeted delivery of siRNA and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules 17(1):76–87. https://doi.org/10.1021/acs.biomac.5b01189
Singh B, Maharjan S, Kim Y-K, Jiang T, Islam MA, Kang S-K, Cho M-H, Choi Y-J, Cho C-S (2014) Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis. J Nanosci Nanotechnol 14(11):8356–8364. https://doi.org/10.1166/jnn.2014.9919
Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH (2009) Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30(6):1089–1097. https://doi.org/10.1016/j.biomaterials.2008.10.047
Garrigues HJ, Rubinchikova YE, DiPersio CM, Rose TM (2008) Integrin αVβ3 binds to the RGD motif of glycoprotein B of Kaposi’s Sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor. J Virol 82:1570 LP–1571580
Mould AP, Komoriya A, Yamada KM, Humphries MJ (1991) The CS5 peptide is a second site in the IIICS region of fibronectin recognized by the integrin alpha 4 beta 1. Inhibition of alpha 4 beta 1 function by RGD peptide homologues. J Biol Chem 266(6):3579–3585. https://doi.org/10.1016/S0021-9258(19)67834-8
Makarem R, Humphries MJ (1991) LDV: a novel cell adhesion motif recognized by the integrin alpha 4 beta 1. Biochem Soc Trans 19(4):380S. https://doi.org/10.1042/bst019380s
Hu J, Zhu M, Liu K, Fan H, Zhao W, Mao Y, Zhang Y (2016) A biodegradable polyethylenimine-based vector modified by trifunctional peptide R18 for enhancing gene transfection efficiency in vivo. Plos One 11(12):e0166673. https://doi.org/10.1371/journal.pone.0166673
Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, García AJ (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31(9):2574–2582. https://doi.org/10.1016/j.biomaterials.2009.12.008
Khew ST, Zhu XH, Tong YW (2007) An integrin-specific collagen-mimetic peptide approach for optimizing Hep3B liver cell adhesion, proliferation, and cellular functions. Tissue Eng 13(10):2451–2463. https://doi.org/10.1089/ten.2007.0063
Zeltz C, Orgel J, Gullberg D (2014) Molecular composition and function of integrin-based collagen glues—Introducing COLINBRIs. Biochim Biophys Acta - Gen Subj 1840(8):2533–2548. https://doi.org/10.1016/j.bbagen.2013.12.022
Shekaran A, García JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, García AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35(21):5453–5461. https://doi.org/10.1016/j.biomaterials.2014.03.055
Gilbert M, Giachelli CM, Stayton PS (2003) Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A 67(1):69–77. https://doi.org/10.1002/jbm.a.10053
Hamano N, Negishi Y, Fujisawa A, Manandhar M, Sato H, Katagiri F, Nomizu M, Aramaki Y (2012) Modification of the C16Y peptide on nanoparticles is an effective approach to target endothelial and cancer cells via the integrin receptor. Int J Pharm 428(1-2):114–117. https://doi.org/10.1016/j.ijpharm.2012.02.006
Patel R, Santhosh M, Dash J, Karpoormath R, Jha A, Kwak J, Patel M, Kim J (2018) Ile-Lys-Val-ala-Val (IKVAV) peptide for neuronal tissue engineering. Polym Adv Technol 30:4–12. https://doi.org/10.1002/pat.4442
Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012) Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21(13):2442–2456. https://doi.org/10.1089/scd.2011.0615
Puchalapalli M, Mu L, Edwards C, Kaplan-Singer B, Eni P, Belani K, Finkelstein D, Patel A, Sayyad M, Koblinski JE (2019) The Laminin-α1 chain-derived peptide, AG73, binds to syndecans on MDA-231 breast cancer cells and alters filopodium formation. Anal Cell Pathol (Amst) 2019:9192516
Gobin AS, West JL (2003) Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mater Res A 67(1):255–259. https://doi.org/10.1002/jbm.a.10110
Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12(1):697–715. https://doi.org/10.1146/annurev.cellbio.12.1.697
Truong NF, Kurt E, Tahmizyan N, Lesher-Pérez SC, Chen M, Darling NJ, Xi W, Segura T (2019) Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomater 94:160–172. https://doi.org/10.1016/j.actbio.2019.02.054
Perlstein I, Connolly JM, Cui X, Song C, Li Q, Jones PL, Lu Z, DeFelice S, Klugherz B, Wilensky R, Levy RJ (2003) DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther 10(17):1420–1428. https://doi.org/10.1038/sj.gt.3302043
Dhaliwal A, Maldonado M, Lin C, Segura T (2012) Cellular cytoskeleton dynamics modulates non-viral gene delivery through RhoGTPases. Plos One 7(4):e35046. https://doi.org/10.1371/journal.pone.0035046
Zhang K, Fang H, Qin Y, Zhang L, Yin J (2018) Functionalized scaffold for in situ efficient gene transfection of mesenchymal stem cells spheroids toward chondrogenesis. ACS Appl Mater Interfaces 10(40):33993–34004. https://doi.org/10.1021/acsami.8b12268
Kong HJ, Liu J, Riddle K, Matsumoto T, Leach K, Mooney DJ (2005) Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 4(6):460–464. https://doi.org/10.1038/nmat1392
Modaresi S, Pacelli S, Whitlow J, Paul A (2018) Deciphering the role of substrate stiffness in enhancing the internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers. Nanoscale 10(19):8947–8952. https://doi.org/10.1039/C8NR01516C
Chu C, Kong H (2012) Interplay of cell adhesion matrix stiffness and cell type for non-viral gene delivery. Acta Biomater 8(7):2612–2619. https://doi.org/10.1016/j.actbio.2012.04.014
Gupta M, Doss BL, Kocgozlu L, Pan M, Mège R-M, Callan-Jones A, Voituriez R, Ladoux B (2019) Cell shape and substrate stiffness drive actin-based cell polarity. Phys Rev E 99(1):12412. https://doi.org/10.1103/PhysRevE.99.012412
Gupta M, Sarangi BR, Deschamps J, Nematbakhsh Y, Callan-Jones A, Margadant F, Mège R-M, Lim CT, Voituriez R, Ladoux B (2015) Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat Commun 6(1):7525. https://doi.org/10.1038/ncomms8525
Sun M, Chi G, Xu JJ, Tan Y, Xu JJ, Lv S, Xu Z, Xia Y, Li L, Li Y (2018) Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther 9(1):52. https://doi.org/10.1186/s13287-018-0798-0
Du J, Zu Y, Li J, Du S, Xu Y, Zhang L, Jiang L, Wang Z, Chien S, Yang C (2016) Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep 6(1):20395. https://doi.org/10.1038/srep20395
Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, Kam Z, Geiger B, Bershadsky AD (2011) Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat Cell Biol 13(12):1457–1465. https://doi.org/10.1038/ncb2370
Zhang T, Gong T, Xie J, Lin S, Liu Y, Zhou T, Lin Y (2016) Softening substrates promote chondrocytes phenotype via RhoA/ROCK pathway. ACS Appl Mater Interfaces 8(35):22884–22891. https://doi.org/10.1021/acsami.6b07097
Cai L, Liu W, Cui Y, Liu Y, Du W, Zheng L, Pi C, Zhang D, Xie J, Zhou X (2020) Biomaterial stiffness guides cross-talk between chondrocytes: Implications for a novel cellular response in cartilage tissue engineering. ACS Biomater Sci Eng 6(8):4476–4489. https://doi.org/10.1021/acsbiomaterials.0c00367
Grover CN, Gwynne JH, Pugh N, Hamaia S, Farndale RW, Best SM, Cameron RE (2012) Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomater 8(8):3080–3090. https://doi.org/10.1016/j.actbio.2012.05.006
Davidenko N, Bax DV, Schuster CF, Farndale RW, Hamaia SW, Best SM, Cameron RE (2015) Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds. J Mater Sci Mater Med 27:14
Rioja A, Muniz-Maisonet M, Koob T, Gallant N (2017) Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration. AIMS Bioeng 4(2):300–317. https://doi.org/10.3934/bioeng.2017.2.300
Hogrebe NJ, Gooch KJ (2016) Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J Biomed Mater Res A 104(9):2356–2368. https://doi.org/10.1002/jbm.a.35755
Krüger-Genge A, Hauser S, Neffe AT, Liu Y, Lendlein A, Pietzsch J, Jung F (2021) Response of endothelial cells to gelatin-based hydrogels. ACS Biomater Sci Eng 7(2):527–540. https://doi.org/10.1021/acsbiomaterials.0c01432
Ludtke JJ, Sebestyén MG, Wolff JA (2002) The effect of cell division on the cellular dynamics of microinjected DNA and dextran. Mol Ther 5(5):579–588. https://doi.org/10.1006/mthe.2002.0581
Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847 LP–847855
Liu X, Yang H, Liu Y, Gong X, Huang H (2019) Numerical study of clathrin-mediated endocytosis of nanoparticles by cells under tension. Acta Mech Sin 35(3):691–701. https://doi.org/10.1007/s10409-019-00839-0
Ferguson JP, Huber SD, Willy NM, Aygün E, Goker S, Atabey T, Kural C (2017) Mechanoregulation of clathrin-mediated endocytosis. J Cell Sci 130:3631 LP–3633636
Baschieri F, Dayot S, Elkhatib N, Ly N, Capmany A, Schauer K, Betz T, Vignjevic DM, Poincloux R, Montagnac G (2018) Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures. Nat Commun 9(1):3825. https://doi.org/10.1038/s41467-018-06367-y
Han S, Pang M-F, Nelson CM (2018) Substratum stiffness tunes proliferation downstream of Wnt3a in part by regulating integrin-linked kinase and frizzled-1. J Cell Sci 131:jcs210476
Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32(16):3921–3930. https://doi.org/10.1016/j.biomaterials.2011.02.019
Tian B, Ding X, Song Y, Chen W, Liang J, Yang L, Fan Y, Li S, Zhou Y (2019) Matrix stiffness regulates SMC functions via TGF-β signaling pathway. Biomaterials 221:119407. https://doi.org/10.1016/j.biomaterials.2019.119407
Pang M, Teng Y, Huang J, Yuan Y, Lin F, Xiong C (2017) Substrate stiffness promotes latent TGF-beta1 activation in hepatocellular carcinoma. Biochem Biophys Res Commun 483(1):553–558. https://doi.org/10.1016/j.bbrc.2016.12.107
Ruppender NS, Merkel AR, Martin TJ, Mundy GR, Sterling JA, Guelcher SA (2010) Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. Plos One 5(11):e15451. https://doi.org/10.1371/journal.pone.0015451
Page JM, Merkel AR, Ruppender NS, Guo R, Dadwal UC, Cannonier S, Basu S, Guelcher SA, Sterling JA (2015) Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin β3 and TGF-β receptor type II. Biomaterials 64:33–44. https://doi.org/10.1016/j.biomaterials.2015.06.026
Smith LR, Cho S, Discher DE (2018) Stem cell differentiation is regulated by extracellular matrix mechanics. Physiol (Bethesda) 33(1):16–25. https://doi.org/10.1152/physiol.00026.2017
Sun M, Chi G, Li P, Lv S, Xu J, Xu Z, Xia Y, Tan Y, Xu J, Li L, Li Y (2018) Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. Int J Med Sci 15(3):257–268. https://doi.org/10.7150/ijms.21620
Hadi A, Rastgoo A, Haghighipour N, Bolhassani A, Asgari F, Soleymani S (2018) Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. Plos One 13(12):e0209199. https://doi.org/10.1371/journal.pone.0209199
Zhou ZL, Sun XX, Ma J, Man CH, Wong AST, Leung AY, Ngan AHW (2016) Mechanical oscillations enhance gene delivery into suspended cells. Sci Rep 6(1):22824. https://doi.org/10.1038/srep22824
Soleymani S, Hadi A, Asgari F, Bolhassani* NH and A (2019) Combination of mechanical and chemical methods improves gene delivery in cell-based HIV vaccines. Curr Drug Deliv. 16:818–828, 9, doi: https://doi.org/10.2174/1567201816666190923152914
Hadi A, Rastgoo A, Bolhassani A, Haghighipour N (2019) Effects of stretching on molecular transfer from cell membrane by forming pores. Soft Mater 17(4):391–399. https://doi.org/10.1080/1539445X.2019.1610974
Chalberg TW, Vankov A, Molnar FE, Butterwick AF, Huie P, Calos MP, Palanker DV (2006) Gene transfer to rabbit retina with electron avalanche transfection. Invest Ophthalmol Vis Sci 47(9):4083–4090. https://doi.org/10.1167/iovs.06-0092
Geiger RC, Taylor W, Glucksberg MR, Dean DA (2006) Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 13(8):725–731. https://doi.org/10.1038/sj.gt.3302693
Taylor W, Gokay KE, Capaccio C, Davis E, Glucksberg M, Dean DA (2003) The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Mol Ther 7(4):542–549. https://doi.org/10.1016/S1525-0016(03)00041-8
Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413. https://doi.org/10.1016/j.cell.2010.12.031
Gervásio OL, Phillips WD, Cole L, Allen DG (2011) Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci 124:3581 LP–3583590
Echarri A, Muriel O, Pavón DM, Azegrouz H, Escolar F, Terrón MC, Sanchez-Cabo F, Martínez F, Montoya MC, Llorca O, Del Pozo MA (2012) Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 125:3097–3113
Tamura K, Mizutani T, Haga H, Kawabata K (2010) Nano-mechanical properties of living cells expressing constitutively active RhoA effectors. Biochem Biophys Res Commun 403(3-4):363–367. https://doi.org/10.1016/j.bbrc.2010.11.036
Baschieri F, Le Devedec D, Elkhatib N, Montagnac G (2019) Frustration of endocytosis potentiates compression-induced receptor signaling. 133(17):jcs239681. https://doi.org/10.1242/jcs.239681
Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86(4):2156–2164. https://doi.org/10.1016/S0006-3495(04)74275-7
Andree C, Voigt M, Wenger A, Erichsen T, Bittner K, Schaefer D, Walgenbach K-J, Borges J, Horch RE, Eriksson E, Stark GB (2001) Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system. Tissue Eng 7(6):757–766. https://doi.org/10.1089/107632701753337708
Zhang Y, Zhang L, Li Y, Sun S, Tan H (2014) Different contributions of clathrin- and caveolae-mediated endocytosis of vascular endothelial cadherin to lipopolysaccharide-induced vascular hyperpermeability. Plos One 9(9):e106328. https://doi.org/10.1371/journal.pone.0106328
Stoeber M, Stoeck IK, Hänni C, Bleck CKE, Balistreri G, Helenius A (2012) Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31(10):2350–2364. https://doi.org/10.1038/emboj.2012.98
Walker M, Rizzuto P, Godin M, Pelling AE (2020) Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Sci Rep 10(1):7696. https://doi.org/10.1038/s41598-020-64725-7
Lee H, Eskin SG, Ono S, Zhu C, McIntire LV (2019) Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J Cell Sci 132:jcs216911
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K (2021) Understanding in vivo fate of nucleic acid and gene medicines for the rational design of drugs. Pharmaceutics 13(2). https://doi.org/10.3390/pharmaceutics13020159
Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792. https://doi.org/10.1038/nature08476