Physical and Mechanical Properties of Composite Ceramics in the ZrB2–SiC–MoSi2 System

E. S. Motailo1, L. A. Lisyanskii2, С. В. Вихман2, Д. Д. Несмелов2
1St. Petersburg State Institute of Technology
2St. Petersburg State Institute of Technology, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Silva, E.A.C. and Kaufman, M.J., Phase relations in the Mo–Si–C system relevant to the processing of MoSi2–SiC composites, Metall. Mater. Trans. A, 1994, vol. 25, no. 1, pp. 5–15.

Ordan’yan, S.S., Vikhman, S.V., Larentseva, S.A., and Smirnov, V.V., Structure of the SiC–MoSi2 section in the Mo–Si–C system, Ogneupory Tekh. Keram., 2006, no. 11, pp. 2–4.

Ordan’yan, S.S., Bulina, E.N., Vikhman, S.V., and Smirnov, V.V., Interaction in SiC–WSi2 system, Ogneupory Tekh. Keram., 2007, no. 2, pp. 3–5.

Ordan’yan, S.S., Vikhman, S.V., Bulina, E.N., and Smirnov, V.V., Interaction in SiC–MeVSi2 system, Ogneupory Tekh. Keram., 2008, no. 5, pp. 14–17.

Ordan’yan, S.S., Regularities of interaction in the SiC–MeIV–VIB2 systems, Zh. Prikl. Khim., 1993, vol. 66, no. 11, pp. 2439–2444.

Ordan’yan, S.S., Vikhman, S.V., Nagaeva, Yu.V., and Ovsepyan, A.O., Interaction in MoSi2–MeIVB2 systems, Izv. NAN RA GIUA, Ser. Tekh. Nauk, 2011, vol. 64, no. 1, pp. 36–43.

Ordan’yan, S.S., Vikhman, S.V., and Nagaeva, Y.S., Composite WSi2-MeVB2 materials in W–Si–MeV–B systems, Refract. Ind. Ceram., 2009, vol. 50, no. 2, pp. 127–130.

Meier, S. and Heinrich, J.G., Processing–microstructure–properties relationships of MoSi2–SiC composites, J. Eur. Ceram. Soc., 2002, vol. 22, no. 13, pp. 2357–2363.

Gnesin, B.A. and Gnesin, I.B., Synthesis of the Nowotny phase Mo4.8Si3C0.6 from Mo5Si3+ carbon mixtures, Inorg. Mater., 2015, vol. 51, no. 10, pp. 991–998.

Gnesin, B.A., Gnesin, I.B., and Nekrasov, A.N., The interaction of carbon with Mo5Si3 and W5Si3 silicides. Nowotny phase synthesis, Intermetallics, 2013, vol. 41, pp. 82–95.

Sciti, D., Silvestroni, L., Celotti, G., and Guicciardi, S., Sintering and mechanical properties of ZrB2–TaSi2 and HfB2–TaSi2 ceramic composites, J. Am. Ceram. Soc., 2008, vol. 91, no. 10, pp. 3285–3291.

Sciti, D., Guicciardi, S., Bellosi, A., and Pezzotti, G., Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite, J. Am. Ceram. Soc., 2006, vol. 89, no. 7, pp. 2320–2322.

Sciti, D., Monteverde, F., Guicciardi, S., Pezzotti, G., and Bellosi, A., Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques, Mater. Sci. Eng., A, 2006, vol. 434, nos. 1–2, pp. 303–309.

Rezaie, A., Fahrenholtz, W.G., and Hilmas, G.E., Oxidation of zirconium diboride–silicon carbide at 1500°C at a low partial pressure of oxygen, J. Am. Ceram. Soc., 2006, vol. 89, no. 10, pp. 3240–3245.

Monteverde, F. and Bellosi, A., The resistance to oxidation of an HfB2–SiC composite, J. Eur. Ceram. Soc., 2005, vol. 25, no. 7, pp. 1025–1031.

Monteverde, F. and Bellosi, A., Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 331–336.

Monteverde, F., Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 2007, vol. 428, nos. 1–2, pp. 197–205.

Mallik, M., Ray, K.K., and Mitra, R., Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites, J. Eur. Ceram. Soc., 2011, vol. 31, nos. 1–2, pp. 199–215.

Nguyen, V.H., Delbari, S.A., Asl, M.S., Namini, A.S., Kakroudig, M.G., Azizian-Kalandaragh, Y., Van Le, Q., Mohammadi, M., and Shokouhimehrc, M., Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics, Int. J. Refract. Met. Hard Mater., 2020, vol. 93, 105355.

Guo, S.Q., Nishimura, T., Mizuguchi, T., and Kagawa, Y., Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites, J. Eur. Ceram. Soc., 2008, vol. 28, no. 9, pp. 1891–1898.

Monteverde, F., The addition of SiC particles into a MoSi2-doped ZrB2 matrix: Effects on densification. Microstructure and thermo-physical properties, Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 626–633.

Mashhadi, M., Shambuli, M., and Safi, S., Effect of MoSi2 addition and particle size of SiC on pressureless sintering behavior and mechanical properties of ZrB2–SiC–MoSi2 composites, J. Mater. Res. Technol., 2016, vol. 5, no. 3, pp. 200–205.

He, R., Tong, Z., Zhang, K., and Fang, D., Mechanical and electrical properties of MoSi2-based ceramics with various ZrB2–20 vol % SiC as additives for ultra-high temperature heating element, Ceram. Int., 2018, vol. 44, no. 1, pp. 1041–1045.

Yang, Y., Li, M., Xu, L., Xu, J., Qian, Y., Zuo, J., and Li, T. Oxidation behaviours of ZrB2–SiC–MoSi2 composites at 1800°C in air with different pressures, Corros. Sci., 2019, vol. 157, pp. 87–97.

Ghadami, S., Taheri-Nassaj, E., and Baharvandi, H.R., Novel HfB2–SiC–MoSi2 composites by reactive spark plasma sintering, J. Alloys Compd., 2019, vol. 809, p. 151705.

Ghadami, S., Taheri-Nassaj, E., Baharvandi, H.R., and Ghadami, F., Effect of in situ VSi2 and SiC phases on the sintering behavior and the mechanical properties of HfB2-based composites, Sci. Rep., 2020, vol. 10, no. 1, pp. 1–13.

Bai, Y., Sun, M., Li, M., Fan, S., and Cheng, L., Improved fracture toughness of laminated ZrB2–SiC–MoSi2 ceramics using SiC whisker, Ceram. Int., 2018, vol. 44, no. 8, pp. 8890–8897.

Potanin, A.Y., Astapov, A.N., Rupasov, S.I., Vorotilo, S., Kochetov, N.A., Kovalev, D.Y., and Levashov, E.A., Structure and properties of MoSi2–MeB2–SiC (Me = Zr, Hf) ceramics produced by combination of SHS and HP techniques, Ceram. Int., 2020, vol. 46, no. 18, pp. 28725–28734.

Ordanyan, S.S. and Unrod, V.I., Eutectics and their models sintered composites in systems of refractory materials, Refract. Ind. Ceram., 2005, vol. 46, no. 4, pp. 276–281.

Markov, M.A., Krasikov, A.V., Bykova, A.D., Staritsyn, M.V., Ordan’yan, S.S., Vikhman, S.V., and Perevislov, S.N., Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering, Refract. Ind. Ceram., 2019, vol. 60, no. 4, pp. 385–388. https://doi.org/10.1007/s11148-019-00372-4

Perevislov, S.N., Markov, M.A., Motailo, E.S., Vikhman, S.V., and Titov, D.D., Physical and mechanical properties of composite materials in the MoSi2–SiC–TiB2 system, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, p. 012067. https://doi.org/10.1088/1757-899X/848/1/012067

Fu, Q.G., Jing, J.Y., Tan, B.Y., Yuan, R.M., Zhuang, L., and Li, L., Nanowire-toughened transition layer to improve the oxidation resistance of SiC–MoSi2–ZrB2 coating for C/C composites, Corros. Sci., 2016, vol. 111, pp. 259–266.

Wang, P., Li, H., Ren, X., Yuan, R., Hou, X., and Zhang, Y., HfB2–SiC–MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites, J. Alloys Compd., 2017, vol. 722, pp. 69–76.

Wang, P., Li, H., Yuan, R., Xie, W., and Zhang, Y., An oxidation and ablation protective WSi2-HfB2-SiC coating for SiC coated C/C composites at 1973 K and above, Corros. Sci., 2020, vol. 177, 108964.

Bezzi, F., Burgio, F., Fabbri, P., Grilli, S., Magnani, G., Salernitano, E., and Scafe, M., SiC/MoSi2 based coatings for Cf/C composites by two step pack cementation, J. Eur. Ceram. Soc., 2019, vol. 9, no. 1, pp. 79–84.

Sinitsyn, D.Y., Anikin, V.N., Eremin, S.A., Vanyushin, V.O., Shvetsov, A.A., and Bardin, N.G., Heat-resistant coatings of ZrB2–MoSi2–SiC on carbon-carbon composite materials for aerospace applications, Refract. Ind. Ceram., 2020, pp. 1–7.

Nesmelov, D.D., Novoselov, E.S., Lysenkov, A.S., Vikhman, S.V., and Perevislov, S.N., Hardness and fracture-toughness of hot-pressed LaB6–TiB2 ceramics, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 848, p. 012059. https://doi.org/10.1088/1757-899X/848/1/012059