Physical Computation: How General are Gandy’s Principles for Mechanisms?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramson, F.G. (1971). Effective computation over the real numbers. Twelfth annual symposium on switching and automata theory. Northridge, Calif.: Institute of Electrical and Electronics Engineers.
Church, A. (1940). On the concept of a random sequence. American Mathematical Society Bulletin, 46, 130–135.
Copeland, B. J. (1997). The broad conception of computation. American Behavioral Scientist, 40, 690–716.
(1998b). Even Turing machines can compute uncomputable functions. In C. Calude, J. Casti & M. Dinneen (Eds.), Unconventional models of computation. London: Springer-Verlag.
(2000). Narrow versus wide mechanism. Journal of Philosophy, 96, 5–32.
(2002b). Hypercomputation. In B. J. Copeland (Ed.) 2002–3.
(Ed.). (2002–3). Hypercomputation. Special issue of Minds and Machines (Vols 12(4), 13(1)).
(Ed.). (2004). The essential Turing. Oxford: Oxford University Press.
(Ed.). (2005). Alan Turing’s Automatic Computing Engine: The master codebreaker’s struggle to build the modern computer. Oxford: Oxford University Press.
Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280, 76–81 (April).
Copeland, B. J., & Sylvan, R. (1999). Beyond the universal Turing machine. Australasian Journal of Philosophy, 77, 46–66.
da Costa, N. C. A., & Doria, F. A. (1991). Classical physics and Penrose’s thesis. Foundations of Physics Letters, 4, 363–374.
Davies, B. (2001). Building infinite machines. British Journal for the Philosophy of Science, 52, 671–682.
Earman, J., & Norton, J. D. (1993). Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science, 60, 22–42.
Etesi, G., & Németi, I. (2002). Non-Turing computations via Malament-Hogarth space-times. International Journal of Theoretical Physics, 41, 341–370.
Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. J. Keisler & K. Kunen (Eds.), The Kleene symposium. Amsterdam: North-Holland.
(2007). Quantum hypercomputation: Hype or computation? Philosophy of Science (forthcoming).
Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters, 5, 173–181.
(1994). Non-Turing computers and non-Turing computability. PSA, 1, 126–138.
(2004). Deciding arithmetic using SAD computers. British Journal for the Philosophy of Science, 55, 681–691.
Israel, D. (2002). Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and Machines, 12, 181–201.
Penrose, R. (1994). Shadows of the mind: A search for the missing science of consciousness. Oxford: Oxford University Press.
Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun, 39, 81–99.
Pour-El, M. B., & Richards, J. I. (1979). A computable ordinary differential equation which possesses no computable solution. Annals of Mathematical Logic, 17, 61–90.
(1989). Computability in analysis and physics. Berlin: Springer.
Russell, B. A. W. (1936). The limits of empiricism. Proceedings of the Aristotelian Society, 36, 131–50.
Shagrir, O., & Pitowsky, I. (2003). Physical hypercomputation and the Church-Turing thesis. Minds and Machines, 13, 87–101.
Sieg, W. (2002). Calculations by man & machine: Mathematical presentation. Proceedings of the Cracow international congress of logic, methodology and philosophy of science. Synthese Series, Kluwer Academic Publishers.
Sieg, W., & Byrnes, J. (1999). An abstract model for parallel computations: Gandy’s thesis. Monist, 82, 150–164.
Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural networks. Theoretical Computer Science, 131, 331–360.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society (Series 2, Vol. 42, pp. 230–265). In Copeland B. J. (Ed.). The essential Turing, 2004.
(1945). Proposed electronic calculator. In Copeland B. J. (Ed.) Alan Turing’s Automatic Computing Engine, 2005.
(1948). Intelligent machinery. In The essential Turing.
Welch P. D. The extent of computation in Malament-Hogarth spacetimes (forthcoming).