Physical Computation: How General are Gandy’s Principles for Mechanisms?

Minds and Machines - Tập 17 Số 2 - Trang 217-231 - 2007
B. Jack Copeland1, Oron Shagrir2
1School of Philosophy, University of Canterbury, Christchurch, New Zealand#TAB#
2Department of Philosophy, The Hebrew University of Jerusalem, Jerusalem, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramson, F.G. (1971). Effective computation over the real numbers. Twelfth annual symposium on switching and automata theory. Northridge, Calif.: Institute of Electrical and Electronics Engineers.

Church, A. (1940). On the concept of a random sequence. American Mathematical Society Bulletin, 46, 130–135.

Copeland, B. J. (1997). The broad conception of computation. American Behavioral Scientist, 40, 690–716.

(1998a). Super Turing-machines. Complexity, 4, 30–32.

(1998b). Even Turing machines can compute uncomputable functions. In C. Calude, J. Casti & M. Dinneen (Eds.), Unconventional models of computation. London: Springer-Verlag.

(2000). Narrow versus wide mechanism. Journal of Philosophy, 96, 5–32.

(2002a). Accelerating Turing machines. Minds and Machines, 12, 281–301.

(2002b). Hypercomputation. In B. J. Copeland (Ed.) 2002–3.

(Ed.). (2002–3). Hypercomputation. Special issue of Minds and Machines (Vols 12(4), 13(1)).

(Ed.). (2004). The essential Turing. Oxford: Oxford University Press.

(Ed.). (2005). Alan Turing’s Automatic Computing Engine: The master codebreaker’s struggle to build the modern computer. Oxford: Oxford University Press.

Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280, 76–81 (April).

Copeland, B. J., & Sylvan, R. (1999). Beyond the universal Turing machine. Australasian Journal of Philosophy, 77, 46–66.

da Costa, N. C. A., & Doria, F. A. (1991). Classical physics and Penrose’s thesis. Foundations of Physics Letters, 4, 363–374.

Davies, B. (2001). Building infinite machines. British Journal for the Philosophy of Science, 52, 671–682.

Earman, J. (1986). A primer on determinism. Dordrecht: D. Reidel.

Earman, J., & Norton, J. D. (1993). Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science, 60, 22–42.

Etesi, G., & Németi, I. (2002). Non-Turing computations via Malament-Hogarth space-times. International Journal of Theoretical Physics, 41, 341–370.

Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. J. Keisler & K. Kunen (Eds.), The Kleene symposium. Amsterdam: North-Holland.

Hagar, A., & Korolev, A. (2006). Quantum hypercomputability? Minds and Machines, 16, 87–93.

(2007). Quantum hypercomputation: Hype or computation? Philosophy of Science (forthcoming).

Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters, 5, 173–181.

(1994). Non-Turing computers and non-Turing computability. PSA, 1, 126–138.

(2004). Deciding arithmetic using SAD computers. British Journal for the Philosophy of Science, 55, 681–691.

Israel, D. (2002). Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and Machines, 12, 181–201.

Kieu, T. D. (2002). Quantum hypercomputation. Minds and Machines, 12, 541–561.

Kreisel, G. (1974). A notion of mechanistic theory. Synthese, 29, 11–26.

(1982). Review of Pour-El and Richards. Journal of Symbolic Logic, 47, 900–902.

Penrose, R. (1994). Shadows of the mind: A search for the missing science of consciousness. Oxford: Oxford University Press.

Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun, 39, 81–99.

Pour-El, M. B., & Richards, J. I. (1979). A computable ordinary differential equation which possesses no computable solution. Annals of Mathematical Logic, 17, 61–90.

(1989). Computability in analysis and physics. Berlin: Springer.

Russell, B. A. W. (1936). The limits of empiricism. Proceedings of the Aristotelian Society, 36, 131–50.

Shagrir, O. (2002). Effective computation by humans and machines. Minds and Machines, 12, 221–240.

Shagrir, O., & Pitowsky, I. (2003). Physical hypercomputation and the Church-Turing thesis. Minds and Machines, 13, 87–101.

Sieg, W. (2002). Calculations by man & machine: Mathematical presentation. Proceedings of the Cracow international congress of logic, methodology and philosophy of science. Synthese Series, Kluwer Academic Publishers.

Sieg, W., & Byrnes, J. (1999). An abstract model for parallel computations: Gandy’s thesis. Monist, 82, 150–164.

Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural networks. Theoretical Computer Science, 131, 331–360.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society (Series 2, Vol. 42, pp. 230–265). In Copeland B. J. (Ed.). The essential Turing, 2004.

(1945). Proposed electronic calculator. In Copeland B. J. (Ed.) Alan Turing’s Automatic Computing Engine, 2005.

(1948). Intelligent machinery. In The essential Turing.

Welch P. D. The extent of computation in Malament-Hogarth spacetimes (forthcoming).