Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp Âm học Vật lý Đánh giá Tình trạng giòn do Hydro trong Hợp kim Titan PT-7M
Tóm tắt
Đã nghiên cứu ảnh hưởng của nồng độ hydro đến cấu trúc và các tính chất vật lý - cơ học của hợp kim titan PT-7M. Kết quả cho thấy việc tăng lượng pha hydride TiHx dẫn đến tình trạng giòn của hợp kim loại PT-7M, điều này được xác nhận qua việc giảm giá trị độ bền va đập và tăng cường độ cứng vi mô. Một phương pháp kiểm tra nhanh trạng thái giòn do hydro bằng cách sử dụng sóng đàn hồi khối đã được đề xuất.
Từ khóa
#hydro #hợp kim titan #PT-7M #giòn #kiểm tra siêu âm #độ bền va đập #độ cứng vi môTài liệu tham khảo
Ushkov, S.S. and Kozhevnikov, O.A., Experience of application and significance of titanium alloys for development of atomic power engineering of Russia, Vopr. Materialoved., 2009, no. 3 (59), pp. 172–187.
Bakhmet’ev, A.M., Sandler, N.G., Bylov, I.A., Baklanov, A.V., Kashka, M.M., and Filimoshkin, S.V., Failures of steam generator pipe systems at nuclear powered vessels: Analysis of possible causes and mechanisms, Arktika: Ekol. Ekon., 2013, no. 3 (11), pp. 97–101.
Khlybov, A.A., Ryabov, D.A., Pichkov, N., and Shishulin, D.N., Developing an acoustic method for determining the degree of hydrogenation in structures made of titanium alloys, Russ. J. Nondestr. Test., 2019, vol. 5, no. 4, pp. 255–261. https://doi.org/10.1134/S1061830919040090
Weng, Q.-G., Li, R.-D., Yuan, T.-C., Shi, Y.-S., Qiu, Z.-L., et al., Hydrogenation reaction of metallic titanium prepared by molten salt electrolysis, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 1425–1432. https://doi.org/10.1016/S1003-6326(16)64219-X
Tal-Gutalmacher, E. and Eliezer, D., Hydrogen cracking in titanium-based alloys, J. Alloys Compd., 2005, vols. 404–406, pp. 621–625. https://doi.org/10.1016/j.jallcom.2005.02.098
Nishikawa, H., Oda, Y., and Noguchi, H., Effects of internal hydrogen on fatigue strength of commercially pure titanium, Mem. Fac. Eng., Kyushu Univ., 2007, vol. 67, no. 4, pp. 181–189.
Cotterill, P., The Hydrogen Embrittlement of Metals, New York: Pergamon, 1961.
Kolachev, B.A., Vodorodnaya khrupkost’ metallov (The Hydrogen Embrittlement of Metals), Moscow: Metallurgiya, 1985.
Livanov, V.A., Bukhanova, A.A., and Kolachev, B.A., Vodorod v titane (Hydrogen in Titanium), Moscow: Metallurgiya, 1962.
Zwicker, U., Titan und Titanlegierungen, Berlin: Springer, 1974.
Kudiyarov, V.N., Lider, A.M., Pushilina, N.S., and Timchenko, N.A., Hydrogen accumulation and distribution during the saturation of a VT1-0 titanium alloy by an electrolytic method and from a gas atmosphere, Tech. Phys., 2014, vol. 59, no. 9, pp. 1378–1382. https://doi.org/10.1134/S1063784214090151
Fukai, Y., The Metal-Hydrogen System: Basic Bulk Properties, New York: Springer, 2009.
Mueller, W.M., Metal Hydrides, New York: Academic, 1968.
Murashov, A.A., Berendeyev, N.N., Nokhrin, A.V., Galaeva, E.A., and Chuvil’deev, V.N., Investigation of the processes of fatigue and corrosion-fatigue destruction of pseudo-α titanium alloy, Inorg. Mater.: Appl. Res., 2022, vol. 13, pp. 349–356. https://doi.org/10.1134/S2075113322020290
Larionov, V.V. and Varlachev, V.A., Study of changes in the properties of titanium alloys subjected to neutron irradiation, Vopr. Materialoved., 2020, no. 3 (103), pp. 181–187.
Lider, A.M., Larionov, V.V., Garanin, G.V., and Krening, M.Kh., Ultrasonic testing for hydrogen for titanium-based materials and articles, Tech. Phys., 2013, vol. 58, no. 9, pp. 1395–1396. https://doi.org/10.1134/S1063784213090181
Kuksin, A.Yu., Rokhmanenkov, A.S., and Stegailov, V.V. Atomic positions and diffusion paths of H and He in the α-Ti lattice, Phys. Solid State, 2013, vol. 55, no. 2, pp. 367–372. https://doi.org/10.1134/S1063783413020182
Chernov, I.P., Cherdantsev, Yu.P., and Tyurin, Yu.I., Metody issledovaniya sistem metal–vodorod (Investigation Methods of Metal–Hydrogen Systems), Tomsk: Energoatomizdat, 2004.
Gomes, P.M., Domizzi, G., Lopez Pumagera, M.I., and Ruzzante, J.E., Characterization of hydrogen concentration in Zircaloy-4 using ultrasonic techniques, J. Nucl. Mater., 2006, vol. 353, pp. 167–176.
San-Martin, A. and Manchester, F.D., The H–Ti (hydrogen–titanium) system, Bull. Alloy Phase Diagrams, 1987, vol. 8, no. 1, pp. 30–42.
Tal-Gutelmacher, E. and Eliezer, D., The hydrogen embitterment of titanium based alloys, JOM, 2005, vol. 57, pp. 46–49.
Tal-Gutelmacher, E., Pundt, A., and Kirchheim, R., The effect of residual on hydrogenation behavior of titanium thin films, Scr. Mater., 2010, vol. 62, no. 9, pp. 709–712.
Louthan, M.R., Hydrogen embrittlement of metals: A primer for the failure analyst, J. Failure Anal. Prev., 2008, vol. 8, no. 3, pp. 289–307.
Yuan, B.-G., Li, C.-F., Yu, H.-P., and Sun, D.-L., Effect of hydrogen content and stress state on room-temperature mechanical properties of T–6Al–4V alloy, Trans. Nonferrous Met. Soc. China, 2009, vol. 19, suppl. 2, pp. s423–s428.
Khlybov, A.A. and Ryabov, D.A., Assessment of residual stresses in specimens of ferritic-pearlitic steel with austenitic cladding, Met. Sci. Heat Treat., 2019, vol. 61, nos. 1–2, pp. 114–119. https://doi.org/10.1007/s11041-019-00385-3
Khlybov, A.A., Vasil’ev, V.G., and Uglov, A.L., Determination of physicochemical parameters of the specimens exposed to radiation, Zavod. Lab. Diagn. Mater., 2007, vol. 73, no. 12, pp. 46–49. https://elibrary.ru/item.asp?id=10338149
Uglov, A.L., Khlybov, A.A., Pichkov, S.N., and Shishulin, D.N., An acoustic method for estimating the thermal-pulsation-induced damage in austenitic steel, Russ. J. Nondestruct. Test., 2016, vol. 52, no. 2, pp. 53–59. https://doi.org/10.1134/S106183091602008X