Phylogeny of Microcystins: Evidence of a Biogeographical Trend?

Current Microbiology - Tập 66 - Trang 214-221 - 2012
Cristiana Moreira1,2, Vitor Vasconcelos1,2, Agostinho Antunes1,2
1CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
2Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal

Tóm tắt

Microcystins, the most prevalent cyanotoxins occurring worldwide, were first recorded in the species Microcystis aeruginosa. Its production has been reported in all continents; thus, we propose a comprehensive phylogenetic study to characterize M. aeruginosa microcystin-producing strains and establish whether or not the species has an historic biogeography. To accomplish this, we compared phylogenetically the nucleotide sequences of three genes of the mcy gene cluster (mcyA, mcyD and mcyG) from toxin producing M. aeruginosa strains across all the five continents. The obtained results provided valuable insight on the biogeography of M. aeruginosa produced microcystins: (i) the Asian strains showed to be distinct from the other continental groups indicating a genetically unique population and (ii) Asian strains were more related to European and North American strains. Moreover, the evidence of positive selection was determined in all the three mcy genes indicating that some functionality yet to be determined could be under selection for these genes.

Tài liệu tham khảo

Barrios-Llerena ME, Burja AM, Wright PC (2007) Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 34:443–456 Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6:R319–R325 Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459 Dittmann E, Neilan BA, Börner T (2001) Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol 57:467–473 Dittmann E, Wiegand C (2006) Cyanobacterial toxins—occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17 Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem 265(15):19401–19404 Janse I, Edwin W, Kardinaal A, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcriber spacer diversity. Appl Environ Microbiol 70(7):3979–3987 Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace M, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948 Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936 Pereira SR, Vasconcelos VM, Antunes A (2010) The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins. Crit Rev Toxicol 41(2):83–110 Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818 Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K (2004) Phylogenetic evidence for the early evolution of microcystin synthesis. PNAS 101(2):568–573 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 Sivonen K, Jones G (1999). Cyanobacterial toxins. Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. E&FN Spon, London Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599 Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153:3695–3703 Tanabe Y, Kaya K, Watanabe M (2004) Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58:633–641 Tanabe Y, Sano T, Kasai F, Watanabe MM (2009) Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa. BMC Evol Biol 9:115. doi:10.1186/1471-21-48-9-115 Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptidepolyketide synthetase system. Chem Biol 7:753–764 Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS (2008) Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evol Biol 8:256. doi:10.1186/1471-2148-8-256 van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6(5):e19561. doi:10.1371/journal.pone.0019561 Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563 Yang Z (2007) PAML: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591 Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449 Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118