Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae

Studies in Mycology - Tập 93 Số 1 - Trang 155-252 - 2019
X W Wang1,2, Feng‐Yan Bai1, Konstanze Bensch2, Martin Meijer2, B D Sun3, Yanfeng Han4, P.W. Crous5,6,2, Robert A. Samson2, Fan Yang7, Jos Houbraken2
1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
2Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
3China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
4Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou, 550025, China.
5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
7Grassland Institute, College of Animal Science & Technology, China Agricultural University, NO. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100093, China.

Tóm tắt

The genus Thielavia is morphologically defined by having non-ostiolate ascomata with a thin peridium composed of textura epidermoidea, and smooth, single-celled, pigmented ascospores with one germ pore. Thielavia is typified with Th. basicola that grows in close association with a hyphomycete which was traditionally identified as Thielaviopsis basicola. Besides Th. basicola exhibiting the mycoparasitic nature, the majority of the described Thielavia species are from soil, and some have economic and ecological importance. Unfortunately, no living type material of Th. basicola exists, hindering a proper understanding of the classification of Thielavia. Therefore, Thielavia basicola was neotypified by material of a mycoparasite presenting the same ecology and morphology as described in the original description. We subsequently performed a multi-gene phylogenetic analyses (rpb2, tub2, ITS and LSU) to resolve the phylogenetic relationships of the species currently recognised in Thielavia. Our results demonstrate that Thielavia is highly polyphyletic, being related to three family-level lineages in two orders. The redefined genus Thielavia is restricted to its type species, Th. basicola, which belongs to the Ceratostomataceae (Melanosporales) and its host is demonstrated to be Berkeleyomyces rouxiae, one of the two species in the “Thielaviopsis basicola” species complex. The new family Podosporaceae is sister to the Chaetomiaceae in the Sordariales and accommodates the re-defined genera Podospora, Trangularia and Cladorrhinum, with the last genus including two former Thielavia species (Th. hyalocarpa and Th. intermedia). This family also includes the genetic model species Podospora anserina, which was combined in Triangularia (as Triangularia anserina). The remaining Thielavia species fall in ten unrelated clades in the Chaetomiaceae, leading to the proposal of nine new genera (Carteria, Chrysanthotrichum, Condenascus, Hyalosphaerella, Microthielavia, Parathielavia, Pseudothielavia, Stolonocarpus and Thermothielavioides). The genus Canariomyces is transferred from Microascaceae (Microascales) to Chaetomiaceae based on its type species Can. notabilis. Canariomyces is closely related to the human-pathogenic genus Madurella, and includes three thielavia-like species and one novel species. Three monotypic genera with a chaetomium-like morph (Brachychaeta, Chrysocorona and Floropilus) are introduced to better resolve the Chaetomiaceae and the thielavia-like species in the family. Chrysocorona lucknowensis and Brachychaeta variospora are closely related to Acrophialophora and three newly introduced genera containing thielavia-like species; Floropilus chiversii is closely related to the industrially important and thermophilic species Thermothielavioides terrestris (syn. Th. terrestris). This study shows that the thielavia-like morph is a homoplastic form that originates from several separate evolutionary events. Furthermore, our results provide new insights into the taxonomy of Sordariales and the polyphyletic Lasiosphaeriaceae.

Từ khóa


Tài liệu tham khảo

Alexopoulos, 1996

Apinis, 1963, Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham, Nova Hedwigia, 5, 57

Badali, 2011, Fatal cerebral phaeohyphomycosis in an immunocompetent individual due to Thielavia subthermophila, Journal of Clinical Microbiology, 49, 2336, 10.1128/JCM.02648-10

Barr, 1990, Prodromus to nonlichenized pyrenomycetous member of class Hymenoascomycetes, Mycotaxon, 39, 43

Barron, 1968

Bell, 1997, Coprophilous fungi in New Zealand. II. Podospora species with coriaceous perithecia, Mycologia, 89, 908, 10.1080/00275514.1997.12026861

Berka, 2011, Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris, Nature Biotechnology, 29, 922, 10.1038/nbt.1976

Booth, 1961, Studies of Pyrenomyectes: VI. Thielavia, with notes on some allied genera, Mycological Papers, 83, 1

Boucher, 2017, Species delimitation in the Podospora anserina / P. pauciseta / P. comata species complex (Sordariales), Cryptogamie, Mycologie, 38, 485, 10.7872/crym/v38.iss4.2017.485

Braun, 2018, Annotated list of taxonomic novelties published in "Klotzschii Herbarium Vivum Mycologicum, Editio Nova" issued by G. L. Rabenhorst between 1855 and 1858, Schlechtendalia, 35, 1

Cai, 2005, Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes, Fungal Diversity, 19, 1

Cai, 2006, Molecular systematics of Zopfiella and allied genera: evidence from multi-gene sequence analyses, Mycological Research, 110, 359, 10.1016/j.mycres.2006.01.007

Cain, 1962, Studies of coprophilous ascomycetes VIII. new species of Podospora, Canadian Journal of Botany, 40, 447, 10.1139/b62-045

Cannon, 1982, A re-evaluation of Melanospora Corda and similar Pyrenomycetes, with a revision of the British species, Botanical Journal of the Linnean Society, 84, 115, 10.1111/j.1095-8339.1982.tb00363.x

Carmarán, 2015, Species diversity of Cladorrhinum in Argentina and description of a new species, Cladorrhinum australe, Mycological progress, 14, 94, 10.1007/s11557-015-1106-3

Cesati, 1856, Explicatio Iconum, Hedwigia, 1, 103

Cooke, 1973, Variation in isolates of Chaetomium trilaterale, Mycologia, 65, 1212, 10.1080/00275514.1973.12019541

Corda, 1838, 2, 1

Dal Vesco, 1968, Funghi isolati dal suolo di due isole del Pacifico meridionale, Allionia, 14, 31

de Beer, 2014, Redefining Ceratocystis and allied genera, Studies in Mycology, 79, 187, 10.1016/j.simyco.2014.10.001

de Vries, 2011, Post-genomic approaches to understanding interactions between fungi and their environment, IMA Fungus, 2, 81, 10.5598/imafungus.2011.02.01.11

Edward, 1961, A new genus of the Moniliaceae, Mycologia, 51, 781, 10.1080/00275514.1959.12024860

Eriksson, 1993, Outline of the ascomycetes, Systema Ascomycetum, 12, 51

Eriksson, 2004, Outline of Ascomycota - 2004, Myconet, 10, 1

Carbone, 1999, A method for designing primer sets for speciation studies in filamentous ascomycetes, Mycologia, 91, 553, 10.1080/00275514.1999.12061051

Gao, 2017, Characterization and crystal structure of a thermostable glycosidehydrolase family 45 1,4-β-endoglucanase from Thielavia terrestris, Enzyme and Microbial Technology, 99, 32, 10.1016/j.enzmictec.2017.01.005

García-Huante, 2017, The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity, Extremophiles, 21, 175, 10.1007/s00792-016-0893-z

Gilman, 1927, A summary of the soil fungi, Iowa State College Journal of Science, 1, 225

Greif, 2009, A re-evaluation of genus Chaetomidium based on molecular and morphological characters, Mycologia, 101, 554, 10.3852/08-200

Grum-Grzhimaylo, 2016, On the diversity of fungi from soda soils, Fungal Diversity, 76, 27, 10.1007/s13225-015-0320-2

Guarro, 1988, The genus Triangularia, Transactions of the British Mycological Society, 91, 587, 10.1016/S0007-1536(88)80031-7

Guarro, 2012, Atlas of Soil Ascomycetes

Guarro, 1991, A synopsis of the genus Zopfiella (ascomycetes, Lasiosphaeriaceae), Systema Ascomycetum, 10, 79

Han, 2017, Thielavins W–Z7, new antifouling thielavins from the marine-derived fungus Thielavia sp. UST030930-004, Marine Drugs, 15, 128, 10.3390/md15050128

Harveson, 1999

Hawksworth, 1983

Huhndorf, 2004, Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined, Mycologia, 96, 368, 10.1080/15572536.2005.11832982

Ito, 1994, Stellatospora, a new genus of the Sordariaceae, Mycoscience, 35, 413, 10.1007/BF02268515

Jeffries, 1994

Kallio, 2011, Crystal structure of an ascomycete fungal laccase from Thielavia arenaria – common structural features of asco-laccases, FEBS Journal, 278, 2283, 10.1111/j.1742-4658.2011.08146.x

Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Molecular Biology and Evolution, 30, 772, 10.1093/molbev/mst010

Kitahara, 1981, Thielavin A and B, New inhibitors of prostaglandin biosynthesis produced by Thielavia terricola, The Journal of Antibiotics, 34, 1562, 10.7164/antibiotics.34.1562

Kirk, 2008

Kruys, 2015, Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi), Fungal Diversity, 70, 101, 10.1007/s13225-014-0296-3

Liang, 2006, Three prospectively applicable species of Paecilomyces from soils in China, Journal of Fungal Research, 4, 45

Liang, 2006, Studies on the genus Paecilomyces in China IV. Two new species of Paecilomyces with monophialides, Mycotaxon, 97, 13

Liang, 2007, A new thermotolerant Paecilomyces species that produces laccase and a biform sporogenous structure, Fungal Diversity, 27, 95

Liang, 2009, Studies on the genus Paecilomyces in China V. Taifanglania gen. nov. for some monophialidic species, Fungal Diversity, 34, 69

Lodha, 1964, Studies on coprophilous fungi, The Journal of the Indian Botanical Society, 43, 121

Lodhi, 1962, A new genus of the Eurotiales, Mycologia, 54, 217, 10.1080/00275514.1962.12024993

Lu, 2013, A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features, Applied Microbiology and Biotechnology, 97, 8121, 10.1007/s00253-012-4656-1

Luangsa-ard, 2004, The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny, Mycologia, 96, 773, 10.1080/15572536.2005.11832925

Luttrell, 1951, Taxonomy of the pyrenomycetes, University of Missouri Studies, 24, 1

Malloch, 1971, New cleistothecial Sordariaceae and a new family, Coniochaetaceae, Canadian Journal of Botany, 49, 869, 10.1139/b71-127

Maharachchikumbura, 2015, Towards a natural classification and backbone tree for Sordariomycetes, Fungal Diversity, 72, 199, 10.1007/s13225-015-0331-z

Maharachchikumbura, 2016, Families of Sordariomycetes, Fungal Diversity, 79, 1, 10.1007/s13225-016-0369-6

Malloch, 1973, The genus Thielavia, Mycologia, 65, 1055, 10.1080/00275514.1973.12019527

Marchal, 1885, Champignons coprophiles de Belgique, Bulletin de la Société Royale de Botanique de Belgique, 24, 57

Marin-Felix, 2018, Melanospora (Sordariomycetes, Ascomycota) and its relatives, MycoKeys, 44, 81, 10.3897/mycokeys.44.29742

Matushima, 1971, 42

Mbenoun, 2014, Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon, Mycologia, 106, 757, 10.3852/13-298

McCormick, 1925, Perithecia of Thielavia basicola Zopf in culture and the stimulation of their production by extracts from other fungi, Bulletin of Connecticut Agricultural Experiment Station, 269, 539

Miller, 2001, Neotropical ascomycetes 10. New and interesting Cercophora species, Sydowia, 53, 211

Miller, 2005, Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi), Molecular Phylogenetics and Evolution, 35, 60, 10.1016/j.ympev.2005.01.007

Miller, 2010, Creating the CIPRES Science Gateway for inference of large phylogenetic trees, 1

Mirza, 1969, Revision of the genus Podospora, Canadian Journal of Botany, 47, 1999, 10.1139/b69-293

Mouchacca, 1973, Les Thielavia des sols arides: epsèces nouvelles et analyse générique, Bulletin trimestriel de la Société mycologique de France, 89, 295

Mouchacca, 1993, The hyphomycete genus Cladorrhinum and its teleomorph connections, Mycotaxon, 48, 415

Moustafa, 2008, Thielavia gigaspora, a new thermotolerant ascomycete from Egypt, Microbiological Research, 163, 441, 10.1016/j.micres.2006.07.008

Mtibaà, 2018, Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils, Ecotoxicology and Environmental Safety, 156, 87, 10.1016/j.ecoenv.2018.02.077

Nel, 2018, A new genus and species for the globally important, multihost root pathogen Thielaviopsis basicola, Plant Pathology, 67, 871, 10.1111/ppa.12803

Nylander, 2004

Perdomo, 2013, Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora, Mycologia, 105, 398, 10.3852/12-137

Qadri, 2014, Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana), Microbial Ecology, 67, 877, 10.1007/s00248-014-0379-4

Rambaut, 2009

Ronquist, 2012, MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Systematic Biology, 61, 539, 10.1093/sysbio/sys029

Saccardo, 1882, Vols.1–26

Sambrook, 1989

Samson, 1970, The genus Acrophialophora (Fungi, Moniliales), Acta Botanica Neerlandica, 19, 804, 10.1111/j.1438-8677.1970.tb00184.x

Samson, 1977, Observations on the thermophilous ascomycete Thielavia terrestris, Transactions of the British Mycological Society, 69, 417, 10.1016/S0007-1536(77)80080-6

Schultes, 2017, Phylogenetic relationships of Chlamydomyces, Harzia, Olpitrichum, and their sexual allies, Melanospora and Sphaerodes, Fungal Biology, 121, 890, 10.1016/j.funbio.2017.07.004

Silar, 2013, Podospora anserina: from laboratory to biotechnology, 283

Srivastava, 1966, Studies on fungal diseases of some tropical fruits. IV. Some new fungi, Mycopathologia et Mycologia Applicata, 30, 203, 10.1007/BF02053149

Stamatakis, 2014, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033

Stchigel, 2002, New species of Thielavia, with a molecular study of representative species of the genus, Mycological Research, 106, 975, 10.1017/S0953756202006299

Stchigel, 2003, Apiosordaria antarctica and Thielavia antarctica, two new ascomycetes from Antarctica, Mycologia, 95, 1218, 10.1080/15572536.2004.11833030

Syed, 2014, Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila, Genes & Genomics, 36, 321, 10.1007/s13258-013-0170-9

Tamura, 2013, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Molecular Biology and Evolution, 30, 2725, 10.1093/molbev/mst197

Taylor, 2000, Phylogenetic species recognition and species concepts in fungi, Fungal Genetics and Biology, 31, 21, 10.1006/fgbi.2000.1228

Theoulakis, 2009, Keratitis resulting from Thielavia subthermophila Mouchacca, Cornea, 28, 1067, 10.1097/ICO.0b013e31819717f4

Traversog, 1907, Flora italica Cryptogama, Pyrenomycetinae, 2, 420

Udagawa, 1979, Coprophilous pyrenomycetes from Japan V, Transactions of the Mycological Society of Japan, 20, 453

Udagawa, 1981, Additions to the interesting species of Ascomycetes from imported spices, Transactions of the Mycological Society of Japan, 22, 197

van den Brink, 2015, Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae, Fungal Biology, 119, 1255, 10.1016/j.funbio.2015.09.011

van den Brink, 2012, Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus, Fungal Diversity, 52, 197, 10.1007/s13225-011-0107-z

von Arx, 1967

von Arx, 1967, Űber Pleurage verruculosa und die zugehörige Cladorrhinum-Konidienform, Nova Hedwigia, 13, 199

von Arx, 1968, Thielaviella humicola gen. et sp. nov. from Pakistan, Transactions of the British Mycological Society, 51, 611, 10.1016/S0007-1536(68)80038-5

von Arx, 1973, Ostiolate and nonostiolate pyrenomycetes, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, ser. C, 76, 289

von Arx, 1975, On Thielavia and some similar genera of ascomycetes, Studies in Mycology, 8, 1

von Arx, 1984, Canariomyces notabilis, a peculiar ascomycete from the Canary Isolands, Persoonia, 12, 185

von Arx, 1986, The ascomycete genus Chaetomium, Beihefte zur Nova Hedwigia, 84, 1

von Arx, 1988, Sordariaceous ascomycetes without ascospore ejaculation, Beiheft zur Nova Hedwigia, 94, 1

Vu, 2019, Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation, Studies in Mycology, 92, 135, 10.1016/j.simyco.2018.05.001

Wang, 2016, Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments, Studies in Mycology, 84, 145, 10.1016/j.simyco.2016.11.005

Wang, 2016, Phylogenetic reassessment of the Chaetomium globosum species complex, Persoonia, 36, 83, 10.3767/003158516X689657

Wang, 2019, Redefining Humicola sensu stricto and related genera in the Chaetomiaceae, Studies in Mycology, 93, 65, 10.1016/j.simyco.2018.07.001

Whiteside, 1962, Morphological studies in the Chaetomiaceae. II. Ascotricha and Chaetomidium, Mycologia, 54, 152, 10.1080/00275514.1962.12024987

Woon, 2016, Production of an oligosaccharide-specific cellobiohydrolase from the thermophilic fungus Thielavia terrestris, Biotechnology Letters, 38, 825, 10.1007/s10529-016-2045-z

Wu, 2016, Apiosordaria hamata sp. nov. from lake sediment in China, Mycotaxon, 131, 847, 10.5248/131.847

Xu, 2015, Characterization of an acidic cold-adapted cutinase from Thielavia terrestris and its application in flavor ester synthesis, Food Chemistry, 188, 439, 10.1016/j.foodchem.2015.05.026

Zhang, 2002, Molecular phylogeny of Melanospora and similar pyrenomycetous fungi, Mycological Research, 106, 148, 10.1017/S0953756201005354

Zhang, 2006, An overview of the systematics of the Sordariomycetes based on four-gene phylogeny, Mycologia, 98, 1077, 10.1080/15572536.2006.11832635

Zhang, 2015, A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera Acrophialophora and Taifanglania, Mycologia, 107, 768, 10.3852/14-173

Zhang, 2017, Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species, Fungal Biology, 121, 21, 10.1016/j.funbio.2016.08.012

Zopf, 1876, Thielavia basicola Zopf. Genus novum Perisporiacearum, Verhandlungen des Botanischen Vereins für die Provinz Brandenburg, 18, 101

Zopf, 1881, Zur Entwicklungsgeschichte der Ascomyceten: Chaetomium, Nova Acta der Kaiserlich Leopoldinisch-Carolinisch Deutschen Akademie der Naturforscher, 42, 199