Phylogenetic and genetic variation analysis of lesser short-nosed fruit bat Cynopterus brachyotis (Müller 1838) on Java island, Indonesia, inferred from mitochondrial D-loop

Husni Mubarok1,2, Niken Satuti Nur Handayani1, Ibnu Maryanto3, Tuty Arisuryanti1
1Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
2Tadris Biologi, Universitas Islam Negeri Kiai Haji Achmad Siddiq Jember, Jember, Indonesia
3Museum Zoologicum Bogoriense, Widyasatwaloka Building, Research Centre in Biosystematic and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia

Tóm tắt

Cynopterus brachyotis (Müller 1838) is a generalist and widespread fruit bat species which inhabits different types of habitats in Southeast Asia. This species plays an essential role as a seed disperser and pollinator. Morphological study and phylogenetic analysis using mtDNA markers (cyt-b and D-loop) revealed that this species had two different forms in peninsular Malaysia and Borneo and six lineages in Southeast Asia that lead to new species formation. In addition, this species is also reported to have high genetic diversity in Malaysia and Thailand based on the D-loop sequence. However, a phylogenetic and genetic variation study of C. brachyotis in Indonesia has not been conducted yet. These two studies are important as additional information for taxonomic and population genetic studies of this species. Thus, we performed the phylogenetic and genetic diversity analysis of the C. brachyotis population collected from seven habitats on Java island, including open-fragmented habitats (urban, coffee and rubber plantations, pine forest, secondary forest, mangrove forest) and closed habitats (natural forest) using the mtDNA D-loop marker. The phylogenetic tree using the Bayesian inference (BI) and genetic distance using the Kimura-2 parameter (K-2P) demonstrated that 33 individuals of C. brachyotis from seven habitats on Java island overlapped between habitats and could not be distinguished according to their habitats and lineage. Intrapopulation and intraspecies analysis revealed high haplotype diversity of this species on Java island (Hd = 0.933–1.000). The haplotype network was split into two haplogroups, showing haplotype sharing between habitats. These phylogenetic and genetic variations analysis of C. brachyotis bats on Java island indicated that this species is widespread and adapt to different habitats. This study of C. brachyotis on Java island collected from seven different habitats has overlapped and genetically close and has high genetic variation. Our results provide the first reported study of C. brachyotis on Java island and provide data to understand the phylogenetic and genetic diversity of this species in Indonesia.

Tài liệu tham khảo

Mickleburgh SP, Hutson AM, Racey PA (1992) Old World fruit bats: an action plan for their conservation, international union for conservation of nature and natural resources. Information Press, Oxford Maryati M, Kartono AP, Maryanto I (2008) Kelelawar pemakan buah sebagai polinator yang diidentifikasi melalui polen yang digunakan sebagai sumber pakannya di kawasan sektor Linggarjati, Taman Nasional Ciremai Jawa Barat. J Biologi Indones 4:335–347 Maryanto I (1993) Aktivitas kelelawar pemencar biji (Cynopterus brachyotis) dalam memanfaatkan buah-buahan masak di kawasan DAS Hulu Cisadane. Zoo Indonesia 17:1–7 Soegiharto S, Kartono AP, Maryanto I (2010) Pengelompokan kelelawar pemakan buah dan nektar berdasarkan karakteristik jenis pakan polen di Kebun Raya Bogor, Indonesia. J Biologi Indones 6:225–235 Abdullah MT (2003) Biogeography and variation of Cynopterus brachyotis in Southeast Asia Dissertation, University of Queensland Huang JCC, Jazdzyk EL, Nusalawo M, Maryanto I, Wiantoro S, Kingston T (2014) A recent bat survey reveals Bukit Barisan Selatan landscape as a chiropteran diversity hotspot in Sumatra. Acta Chiropt 16:413–449 Kitchener DJ, Maharadatunkamsi (1991) Description of a new species of Cynopterus (Chiroptera: Pteropodidae) from Nusa Tenggara, Indonesia. Rec West Aust Mus 15:307–367 Mubarok H, Handayani NSN, Maryanto I, Arisuryanti T (2021) Karyotype variation in lesser short-nosed fruit bat Cynopterus brachyotis (Müller 1838) from special region Yogyakarta, Indonesia. Biodiversitas 22:2560–2568 Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH (2004) Phylogeny and phylogeography of Old World fruit bats in the Cynopterus brachyotis complex. Mol Phylogenet Evol 33:764–781 Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH (2006) Comparative population structure of Cynopterus fruit bats in peninsular Malaysia and southern Thailand. Mol Ecol 15:29–47 Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet 67:1029–1032 Yamamoto Y (2013) D-loop. In: Reeve ECR (ed) Encyclopedia of genetics. CRC press Mehdizadeh R, Akmali V, Sharifi M (2019) Mitochondrial DNA marker (D-loop) reveals high genetic diversity but low population structure in the pale bent-wing bat (Miniopterus pallidus) in Iran. Mitochondrial DNA A 30:424–433 Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140 Statistics Indonesia (2013) Indonesia population projection 2010-2035. https://www.bps.go.id/. Accessed 28 June 2022. Andō K, Tagawa T, Uchida TA (1980) A karyotypic study on four species of the Indonesian fruit-eating bats, belonging to Cynopterus, Eonycteris and Macroglossus (Chiroptera: Pteropidae). Caryologia 33:41–53 Mubarok H, Handayani NSN, Arisuryanti T, Maryanto I (2021) Haematology profile of fruit bats Cynopterus spp. from special region Yogyakarta, Indonesia. Malays Appl Biol 50:105–113 Suyanto A (2001) Kelelawar di Indonesia. Puslitbang Biologi-LIPI, Bogor Pun KM, Albrecht C, Castella V, Fumagalli L (2009) Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis 30:1008–1014 Arisuryanti T, Firdaus NUN, Hakim L (2020) Genetic characterization of striped snakehead (Channa striata Bloch, 1793) from Arut River, Central Kalimantan inferred from COI mitochondrial gene. In: AIP conference proceedings, vol 2260. AIP Publishing LLC, p 020001 Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis version 3.40 2018 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X : molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549 Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016 Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772 Rozas J, Rerrer-Matta A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 13:3299–3302 Nei M (1987) Molecular evolutionary genetics. Colombia University Press, New York Sari EM, Jianlin H, Noor RR, Sumantri C, Margawati ET (2016) Phylogenetic analysis of Aceh cattle breed of Indonesia through mitochondrial D-loop region. J Genet Eng Biotechnol 14:227–231 Zhang L, Sun K, Csorba G, Hughes AC, Jin L, Xiao Y, Feng J (2021) Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecol Evol 21:1–15 Ha JC, Campion TL (2018) Dog behavior: modern science and our canine companions. Academic, Massachussetts Nonić M, Šijačić-Nikolić M (2021) Genetic diversity: sources, threats, and conservation. In: Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T (eds) Life on land. Springer, Switzerland Teacher AGF, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153 Paradis E (2018) Analysis of haplotype networks: the randomized minimum spanning tree method. Methods Ecol Evol 9:1308–1317 Whitlock MC, Mccauley DE (1999) Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity 82:117–125 Storz JF (2002) Contrasting patterns of divergence in quantitative traits and neutral DNA markers : analysis of clinal variation. Mol Ecol 11:2537–2551 Mohd-Ridwan AR, Abdullah MT (2012) Population genetics of the cave-dwelling dusky fruit bat, Penthetor lucasi, based on four populations in Malaysia Pertanika. J Trop Agric Sci 35:459–484 Manivannan Y, Abd Rahman MR, Tingga RCT, Khan FAAA (2019) Genetic diversity of the cave roosting dusky fruit bat, Penthetor lucasi from Sarawak. Malays Appl Biol 48:167–179 Anthony NM, Johnson-Bawe M, Jeffery K, Clifford SL, Abernethy KA, Tutin CE, Lahm SA, White LJ, Utley JF, Wickings EJ, Bruford MW (2007) The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in Central Africa. PNAS 104:20432–20436 Aplin PK et al (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One 6:e26357 Suzuki H, Nunome M, Kinoshita G, Aplin KP, Vogel P, Kryukov AP, Jin ML, Han SH, Maryanto I, Tsuchiya K, Ikeda H (2013) Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 11:375–390 Sodik M, Pudyatmoko S, Yuwono PSH (2019) Okupansi kukang Jawa (Nycticebus javanicus E. Geoffroy 1812) di hutan tropis dataran rendah di Kemuning, Bejen, Temanggung, Jawa Tengah. Jurnal Ilmu Kehutanan 13:15–27 Ekawati S, Budiningsih K, Sylviani SE, Hakim I (2015) Kajian tinjauan kritis pengelolaan hutan di Pulau Jawa. Policy Brief 9:1–8 Reinhardt KD, Nekaris KA (2016) Climate-mediated activity of the Javan slow Loris, Nycticebus javanicus. AIMS Environ Sci 3:249–260 Šprem N, Frantz AC, Cubric-Curik V, Safner T, Curik I (2013) Influence of habitat fragmentation on population structure of red deer in Croatia. Mamm 78:290–295 Campbell P, Reid NM, Zubaid A, Adnan AM, Kunz TH (2006) Comparative roosting ecology of Cynopterus (Chiroptera: Pteropodidae) fruit bats in peninsular Malaysia. Biotropica 38:725–734 Tanalgo KC, Sritongchuay T, Hughes AC (2021) Seasonal activity of fruit bats in a monoculture rubber and oil palm plantation in the southern Philippines. Conservation 1:258–270