Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry

Radiation Physics and Chemistry - Tập 166 - Trang 108496 - 2020
Erdem Şakar1, Özgür Fırat Özpolat2, Bünyamin Alım3, M.I. Sayyed4, Murat Kurudirek1
1Faculty of Science, Department of Physics, Atatürk University, 25240, Erzurum, Turkey
2Computer Sciences Research and Application Center, Atatürk University, 25240 Erzurum, Turkey
3Technical Scientific Vocational School, Department of Electricity and Energy, Bayburt University, TR-69000, Bayburt, Turkey
4Physics Dept., Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agostinelli, 2003, GEANT4-a simulation toolkit, Nucl. Instrum. Methods A, 506, 250, 10.1016/S0168-9002(03)01368-8

Akkurt, 2009, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy, 36, 1702, 10.1016/j.anucene.2009.09.005

Akkurt, 2005, The shielding of gamma-rays by concretes produced with barite, Prog. Nucl. Energy, 46, 1, 10.1016/j.pnucene.2004.09.015

Akkurt, 2006, Radiation shielding of concretes containing different aggregates, Cement Concr. Compos., 28, 153, 10.1016/j.cemconcomp.2005.09.006

Alim, 2019, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I, Radiat. Phys. Chem., 108455

Alim, 2019, Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: Part II, Radiat. Phys. Chem., 108454

1991

Appoloni, 1994, Mass attenuation coefficients OF BRAZILIAN soils IN the range 10-1450 kev, Appl. Radiat. Isot., 45, 287, 10.1016/0969-8043(94)90041-8

Aygün, 2019, Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications, Res. Phys., 12, 1

Bashter, 1997, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24, 1389, 10.1016/S0306-4549(97)00003-0

Berger, 1987

Buyukyildiz, 2016, Determination of the effective atomic numbers of FexCu1-x binary ferroalloys using a nondestructive technique: Rayleigh-to-Compton scattering ratio, Turk. J. Phys., 40, 278, 10.3906/fiz-1603-25

Chantler, 2000, J. Phys. Chem. Ref. Data, 29, 597, 10.1063/1.1321055

Chilton, 1984

Devillers, 1984, Lifetime of electrons in metals at room-temperature, Solid State Commun., 49, 1019, 10.1016/0038-1098(84)90413-7

El-Khayatt, 2010, Radiation shielding of concretes containing different lime/silica ratios, Ann. Nucl. Energy, 37, 991, 10.1016/j.anucene.2010.03.001

Ersundu, 2018, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy, 104, 280, 10.1016/j.pnucene.2017.10.008

Eyecioglu, 2016, ZXCOM: a software for computation of radiation sensing attributes, Radiat. Eff. Defects Solids, 171, 965, 10.1080/10420150.2016.1263958

Eyecioğlu, 2019, BXCOM: a software for computation of radiation sensing, Radiat. Eff. Defects Solids, 174, 506, 10.1080/10420150.2019.1606811

Farkas, 2006, Irradiation for better foods, Trends Food Sci. Technol., 17, 148, 10.1016/j.tifs.2005.12.003

Gaikwad, 2019, Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids, 503–504, 158, 10.1016/j.jnoncrysol.2018.09.038

Gerward, 2001, X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem., 60, 23, 10.1016/S0969-806X(00)00324-8

Gerward, 2004, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040

Gürol, 2016, X-ray fluorescence analysis of archaeological artefacts from Bozcaada (Tenedos), Turkey, Post Mediev. Archaeol., 50, 412, 10.1080/00794236.2016.1232970

Han, 2012, Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach, Ann. Nucl. Energy, 39, 56, 10.1016/j.anucene.2011.09.008

Han, 2009, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 267, 3, 10.1016/j.nimb.2008.10.004

Han, 2009, Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys, Nucl. Instrum. Methods B, 267, 3505, 10.1016/j.nimb.2009.08.022

Han, 2010, Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys, J. Xray Sci. Technol., 18, 39

Han, 2015, Investigation of Comet Wild-2 in terms of effective atomic numbers, Adv. Space Res., 56, 2275, 10.1016/j.asr.2015.08.018

Harima, 1983, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng., 83, 299, 10.13182/NSE83-A18222

Hormes, 2012, 371

Hubbell, 1982, Photon mass attenuation and energy-absorption coefficients from 1 kev to 20 mev, Int. J. Appl. Radiat. Isot., 33, 1269, 10.1016/0020-708X(82)90248-4

Hubbell, 1999, Review of photon interaction cross section data in the medical and biological context, Phys. Med. Biol., 44, R1, 10.1088/0031-9155/44/1/001

Hubbell, 1995

Icelli, 2013, Investigation of shielding properties of some boron compounds, Ann. Nucl. Energy, 55, 341, 10.1016/j.anucene.2012.12.024

Issa, 2018, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses, Mater. Chem. Phys., 212, 12, 10.1016/j.matchemphys.2018.01.058

Jackson, 1981, X-ray attenuation coefficients of elements and mixtures, Phys. Rep., 70, 169, 10.1016/0370-1573(81)90014-4

Kaewkhao, 2008, Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transfer, 109, 1260, 10.1016/j.jqsrt.2007.10.007

Kaewkhao, 2010, Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO, J. Nucl. Mater., 399, 38, 10.1016/j.jnucmat.2009.12.020

Kanngießer, 2003, A new 3D micro X-ray fluorescence analysis set-up - first archaeometric applications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 211, 259, 10.1016/S0168-583X(03)01321-1

Kaplan, 1989

Kumar, 2019, Physical, structural, optical and gamma ray shielding behavior of (20+ x) PbO–10 BaO–10 Na2O–10 MgO–(50-x) B2O3 glasses, J. Phys. B Condens. Matter, 552, 110, 10.1016/j.physb.2018.10.001

Kumar, 2018, Gamma ray shielding studies on 26.66 B2O3–16GeO2–4Bi2O3–(53.33–x) PbO–xPbF2 glass system using MCNPX, Geant4 and XCOM, Mater. Res. Express, 5, 10.1088/2053-1591/aad821

Kurudirek, 2018, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloy. Comp., 745, 355, 10.1016/j.jallcom.2018.02.158

Limkitjaroenporn, 2011, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solids, 72, 245, 10.1016/j.jpcs.2011.01.007

Manjunatha, 2017, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton, Radiat. Phys. Chem., 137, 254, 10.1016/j.radphyschem.2016.01.024

Marguí, 2005, Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: possibilities and drawbacks, Spectrochim. Acta B At. Spectrosc., 60, 1363, 10.1016/j.sab.2005.08.004

McCaffrey, 2012, Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians, Med. Phys., 39, 4537, 10.1118/1.4730504

Mettler, 2008, Effective doses in radiology and diagnostic nuclear medicine: a catalog, Radiology, 248, 254, 10.1148/radiol.2481071451

Midgley, 2005, Measurements of the X-ray linear attenuation coefficient for low atomic number materials at energies 32-66 and 140 keV, Radiat. Phys. Chem., 72, 525, 10.1016/j.radphyschem.2004.02.001

Møller, 2013, The effects of natural variation in background radioactivity on humans, animals and other organisms, Biol. Rev., 88, 226, 10.1111/j.1469-185X.2012.00249.x

Nowotny, 1998

Okunade, 2007, Parameters and computer software for the evaluation of mass attenuation and mass energy-absorption coefficients for body tissues and substitutes, J. Med. Phys., 32, 124, 10.4103/0971-6203.35725

Onder, 2012, Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds, Nucl. Instrum. Methods B, 292, 1, 10.1016/j.nimb.2012.09.032

Reed, 2011, The history of radiation use in medicine, J. Vasc. Surg., 53, 3S, 10.1016/j.jvs.2010.07.024

Sathiyaraj, 2017, Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel, Vacuum, 143, 138, 10.1016/j.vacuum.2017.06.005

Sayyed, 2016, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Comp., 688, 111, 10.1016/j.jallcom.2016.07.153

Sayyed, 2019, Evaluation of radiation absorption capacity of some soil samples, Radiochim. Acta, 107, 83, 10.1515/ract-2018-2996

Sayyed, 2017, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem., 130, 335, 10.1016/j.radphyschem.2016.09.019

Singh, 2003, ZnO-PbO-B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods B, 207, 257, 10.1016/S0168-583X(03)00462-2

Singh, 2008, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Methods B, 266, 944, 10.1016/j.nimb.2008.02.004

Singh, 2008, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods B, 266, 140, 10.1016/j.nimb.2007.10.018

Singh, 2013, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels, Radioprotection, 48, 431, 10.1051/radiopro/2013067

Singh, 2014, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy, 64, 301, 10.1016/j.anucene.2013.10.003

Singh, 2014, Investigation ON radiation shielding parameters OF ordinary, heavy and super heavy concretes, Nucl. Technol. Radiat. Prot., 29, 149, 10.2298/NTRP1402149S

Singh, 2014, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solids, 404, 167, 10.1016/j.jnoncrysol.2014.08.003

Taylor, 2012, Robust calculation of effective atomic numbers: the Auto-Z(eff) software, Med. Phys., 39, 1769, 10.1118/1.3689810

Un, 2014, The Direct-Z(eff) software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number, Ann. Nucl. Energy, 65, 158, 10.1016/j.anucene.2013.10.041

Wood, 1982

Yalcin, 2012, A different perspective to the effective atomic number (Z(eff)) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM, Nucl. Instrum. Methods A, 686, 43, 10.1016/j.nima.2012.05.041