Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agostinelli, 2003, GEANT4-a simulation toolkit, Nucl. Instrum. Methods A, 506, 250, 10.1016/S0168-9002(03)01368-8
Akkurt, 2009, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy, 36, 1702, 10.1016/j.anucene.2009.09.005
Akkurt, 2005, The shielding of gamma-rays by concretes produced with barite, Prog. Nucl. Energy, 46, 1, 10.1016/j.pnucene.2004.09.015
Akkurt, 2006, Radiation shielding of concretes containing different aggregates, Cement Concr. Compos., 28, 153, 10.1016/j.cemconcomp.2005.09.006
Alim, 2019, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I, Radiat. Phys. Chem., 108455
Alim, 2019, Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: Part II, Radiat. Phys. Chem., 108454
1991
Appoloni, 1994, Mass attenuation coefficients OF BRAZILIAN soils IN the range 10-1450 kev, Appl. Radiat. Isot., 45, 287, 10.1016/0969-8043(94)90041-8
Aygün, 2019, Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications, Res. Phys., 12, 1
Bashter, 1997, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy, 24, 1389, 10.1016/S0306-4549(97)00003-0
Berger, 1987
Buyukyildiz, 2016, Determination of the effective atomic numbers of FexCu1-x binary ferroalloys using a nondestructive technique: Rayleigh-to-Compton scattering ratio, Turk. J. Phys., 40, 278, 10.3906/fiz-1603-25
Chilton, 1984
Devillers, 1984, Lifetime of electrons in metals at room-temperature, Solid State Commun., 49, 1019, 10.1016/0038-1098(84)90413-7
El-Khayatt, 2010, Radiation shielding of concretes containing different lime/silica ratios, Ann. Nucl. Energy, 37, 991, 10.1016/j.anucene.2010.03.001
Ersundu, 2018, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy, 104, 280, 10.1016/j.pnucene.2017.10.008
Eyecioglu, 2016, ZXCOM: a software for computation of radiation sensing attributes, Radiat. Eff. Defects Solids, 171, 965, 10.1080/10420150.2016.1263958
Eyecioğlu, 2019, BXCOM: a software for computation of radiation sensing, Radiat. Eff. Defects Solids, 174, 506, 10.1080/10420150.2019.1606811
Farkas, 2006, Irradiation for better foods, Trends Food Sci. Technol., 17, 148, 10.1016/j.tifs.2005.12.003
Gaikwad, 2019, Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids, 503–504, 158, 10.1016/j.jnoncrysol.2018.09.038
Gerward, 2001, X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem., 60, 23, 10.1016/S0969-806X(00)00324-8
Gerward, 2004, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040
Gürol, 2016, X-ray fluorescence analysis of archaeological artefacts from Bozcaada (Tenedos), Turkey, Post Mediev. Archaeol., 50, 412, 10.1080/00794236.2016.1232970
Han, 2012, Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach, Ann. Nucl. Energy, 39, 56, 10.1016/j.anucene.2011.09.008
Han, 2009, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 267, 3, 10.1016/j.nimb.2008.10.004
Han, 2009, Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys, Nucl. Instrum. Methods B, 267, 3505, 10.1016/j.nimb.2009.08.022
Han, 2010, Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys, J. Xray Sci. Technol., 18, 39
Han, 2015, Investigation of Comet Wild-2 in terms of effective atomic numbers, Adv. Space Res., 56, 2275, 10.1016/j.asr.2015.08.018
Harima, 1983, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng., 83, 299, 10.13182/NSE83-A18222
Hormes, 2012, 371
Hubbell, 1982, Photon mass attenuation and energy-absorption coefficients from 1 kev to 20 mev, Int. J. Appl. Radiat. Isot., 33, 1269, 10.1016/0020-708X(82)90248-4
Hubbell, 1999, Review of photon interaction cross section data in the medical and biological context, Phys. Med. Biol., 44, R1, 10.1088/0031-9155/44/1/001
Hubbell, 1995
Icelli, 2013, Investigation of shielding properties of some boron compounds, Ann. Nucl. Energy, 55, 341, 10.1016/j.anucene.2012.12.024
Issa, 2018, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses, Mater. Chem. Phys., 212, 12, 10.1016/j.matchemphys.2018.01.058
Jackson, 1981, X-ray attenuation coefficients of elements and mixtures, Phys. Rep., 70, 169, 10.1016/0370-1573(81)90014-4
Kaewkhao, 2008, Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transfer, 109, 1260, 10.1016/j.jqsrt.2007.10.007
Kaewkhao, 2010, Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO, J. Nucl. Mater., 399, 38, 10.1016/j.jnucmat.2009.12.020
Kanngießer, 2003, A new 3D micro X-ray fluorescence analysis set-up - first archaeometric applications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 211, 259, 10.1016/S0168-583X(03)01321-1
Kaplan, 1989
Kumar, 2019, Physical, structural, optical and gamma ray shielding behavior of (20+ x) PbO–10 BaO–10 Na2O–10 MgO–(50-x) B2O3 glasses, J. Phys. B Condens. Matter, 552, 110, 10.1016/j.physb.2018.10.001
Kumar, 2018, Gamma ray shielding studies on 26.66 B2O3–16GeO2–4Bi2O3–(53.33–x) PbO–xPbF2 glass system using MCNPX, Geant4 and XCOM, Mater. Res. Express, 5, 10.1088/2053-1591/aad821
Kurudirek, 2018, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloy. Comp., 745, 355, 10.1016/j.jallcom.2018.02.158
Limkitjaroenporn, 2011, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solids, 72, 245, 10.1016/j.jpcs.2011.01.007
Manjunatha, 2017, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton, Radiat. Phys. Chem., 137, 254, 10.1016/j.radphyschem.2016.01.024
Marguí, 2005, Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: possibilities and drawbacks, Spectrochim. Acta B At. Spectrosc., 60, 1363, 10.1016/j.sab.2005.08.004
McCaffrey, 2012, Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians, Med. Phys., 39, 4537, 10.1118/1.4730504
Mettler, 2008, Effective doses in radiology and diagnostic nuclear medicine: a catalog, Radiology, 248, 254, 10.1148/radiol.2481071451
Midgley, 2005, Measurements of the X-ray linear attenuation coefficient for low atomic number materials at energies 32-66 and 140 keV, Radiat. Phys. Chem., 72, 525, 10.1016/j.radphyschem.2004.02.001
Møller, 2013, The effects of natural variation in background radioactivity on humans, animals and other organisms, Biol. Rev., 88, 226, 10.1111/j.1469-185X.2012.00249.x
Nowotny, 1998
Okunade, 2007, Parameters and computer software for the evaluation of mass attenuation and mass energy-absorption coefficients for body tissues and substitutes, J. Med. Phys., 32, 124, 10.4103/0971-6203.35725
Onder, 2012, Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds, Nucl. Instrum. Methods B, 292, 1, 10.1016/j.nimb.2012.09.032
Reed, 2011, The history of radiation use in medicine, J. Vasc. Surg., 53, 3S, 10.1016/j.jvs.2010.07.024
Sathiyaraj, 2017, Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel, Vacuum, 143, 138, 10.1016/j.vacuum.2017.06.005
Sayyed, 2016, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Comp., 688, 111, 10.1016/j.jallcom.2016.07.153
Sayyed, 2019, Evaluation of radiation absorption capacity of some soil samples, Radiochim. Acta, 107, 83, 10.1515/ract-2018-2996
Sayyed, 2017, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem., 130, 335, 10.1016/j.radphyschem.2016.09.019
Singh, 2003, ZnO-PbO-B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods B, 207, 257, 10.1016/S0168-583X(03)00462-2
Singh, 2008, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Methods B, 266, 944, 10.1016/j.nimb.2008.02.004
Singh, 2008, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods B, 266, 140, 10.1016/j.nimb.2007.10.018
Singh, 2013, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels, Radioprotection, 48, 431, 10.1051/radiopro/2013067
Singh, 2014, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy, 64, 301, 10.1016/j.anucene.2013.10.003
Singh, 2014, Investigation ON radiation shielding parameters OF ordinary, heavy and super heavy concretes, Nucl. Technol. Radiat. Prot., 29, 149, 10.2298/NTRP1402149S
Singh, 2014, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solids, 404, 167, 10.1016/j.jnoncrysol.2014.08.003
Taylor, 2012, Robust calculation of effective atomic numbers: the Auto-Z(eff) software, Med. Phys., 39, 1769, 10.1118/1.3689810
Un, 2014, The Direct-Z(eff) software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number, Ann. Nucl. Energy, 65, 158, 10.1016/j.anucene.2013.10.041
Wood, 1982