Phthalocyanines for dye-sensitized solar cells
Tài liệu tham khảo
The Porphyrin Handbook: Phthalocyanines: Spectroscopic and Electrochemical Characterization: 16, Kadish, Karl; Guilard, Roger; Smith, Kevin M. ed., Academic Press, San Diego, 2003.
Leznoff, 1989
Claessens, 2008, Chem. Rec., 8, 75, 10.1002/tcr.20139
Bottari, 2011, Chem. Rev., 110, 6768, 10.1021/cr900254z
Bottari, 2015, Acc. Chem. Res., 48, 900, 10.1021/ar5004384
Bottari, 2013, Covalent, donor-acceptor ensembles based on phthalocyanines and carbon nanostructures, 163
Snow, 2003, 109-Phthalocyanine aggregation, 129
Kameyama, 2005, Angew. Chem., Int. Ed., 44, 4763, 10.1002/anie.200501199
Esenpınar, 2013, J. Photochem. Photobiol. A, 213, 171, 10.1016/j.jphotochem.2010.05.021
Martinez-Diaz, 2010, Chem. Commun., 46, 7090, 10.1039/c0cc02213f
Ragoussi, 2013, Eur. J. Org. Chem., 2013, 6475, 10.1002/ejoc.201301009
Martin-Gomis, 2014, J. Mater. Chem. A, 2, 15672, 10.1039/C4TA01894J
Brogdon, 2018, ChemSusChem, 11, 86, 10.1002/cssc.201701441
Sorokin, 2013, Chem. Rev., 113, 8152, 10.1021/cr4000072
DeRosa, 2002, Coord. Chem. Rev., 233–234, 351, 10.1016/S0010-8545(02)00034-6
Rodríguez-Morgade, 2004, J. Porphyrins Phthalocyanines, 08, 1129, 10.1142/S1088424604000490
Fernández-Ariza, 2017, ChemPhotoChem, 1, 164, 10.1002/cptc.201600004
Fernández-Ariza, 2018, Chem. Eur. J., 24, 2618, 10.1002/chem.201705242
Ragoussi, 2015, Chem. Commun., 51, 3957, 10.1039/C4CC09888A
Lewis, 2006, Proc. Natl. Acad. Sci. U.S.A., 103, 15729, 10.1073/pnas.0603395103
Green, 2013, Phil. Trans. R. Soc. A, 371, 1, 10.1098/rsta.2011.0413
Green, 2013, Prog. Photovolt: Res. Appl., 21, 827, 10.1002/pip.2404
Peter, 2011, Phil. Trans. R. Soc. A, 369, 1840, 10.1098/rsta.2010.0348
Beaujuge, 2011, J. Am. Chem. Soc., 133, 20009, 10.1021/ja2073643
Urbani, 2014, Chem. Rev., 114, 12330, 10.1021/cr5001964
Grätzel, 2009, Acc. Chem. Res., 42, 1788, 10.1021/ar900141y
Hardin, 2012, Nat. Photon., 6, 162, 10.1038/nphoton.2012.22
Hagfeldt, 2010, Chem. Rev., 110, 6595, 10.1021/cr900356p
Zhang, 2013, Energy Environ. Sci., 6, 1443, 10.1039/c3ee24453a
Jung, 2013, J. Phys. Chem. Lett., 4, 1682, 10.1021/jz400112n
Nazeeruddin, 2011, Sol. Energy, 85, 1172, 10.1016/j.solener.2011.01.018
Saliba, 2018, Angew. Chem., 130, 2582, 10.1002/ange.201703226
Xiao, 2017, Adv. Energy Mater., 7, 1700491, 10.1002/aenm.201700491
Calió, 2016, Angew. Chem., Int. Ed., 55, 14522, 10.1002/anie.201601757
Ameen, 2016, ChemSusChem, 9, 10, 10.1002/cssc.201501228
Docampo, 2013, Nat. Commun., 4, 1, 10.1038/ncomms3761
Green, 2014, Nat. Photon., 8, 506, 10.1038/nphoton.2014.134
Zhang, 2015, Nat. Commun., 6, 1
Burschka, 2013, Nature, 499, 316, 10.1038/nature12340
Hodes, 2013, Science, 342, 317, 10.1126/science.1245473
Gao, 2014, Energy Environ. Sci., 7, 2448, 10.1039/C4EE00942H
Lee, 2012, Science, 338, 643, 10.1126/science.1228604
Kazim, 2014, Angew. Chem., Int. Ed., 53, 2812, 10.1002/anie.201308719
He, 2014, J. Mater. Chem. A, 2, 5994, 10.1039/C3TA14160H
Giorgi, 2014, J. Mater. Chem. A, 3, 8981, 10.1039/C4TA05046K
Salim, 2014, J. Mater. Chem. A, 3, 8943, 10.1039/C4TA05226A
Niu, 2015, J. Mater. Chem. A, 3, 8970, 10.1039/C4TA04994B
Liu, 2014, Nat. Photon., 8, 133, 10.1038/nphoton.2013.342
Green, 2017, ACS Energy Lett., 2, 822, 10.1021/acsenergylett.7b00137
Seo, 2016, Acc. Chem. Res., 49, 562, 10.1021/acs.accounts.5b00444
Rong, 2015, Adv. Energy Mater., 5, 1501066, 10.1002/aenm.201501066
Grancini, 2017, Nat. Commun., 8, 15684, 10.1038/ncomms15684
Mathew, 2014, Nat. Chem., 6, 242, 10.1038/nchem.1861
Yella, 2014, Angew. Chem., Int. Ed., 53, 2973, 10.1002/anie.201309343
Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F
Tan, 2017, Science, 355, 722, 10.1126/science.aai9081
Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557
Saliba, 2016, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J
Kumar, 2015, RSC Adv., 5, 3786, 10.1039/C4RA14321C
Javier Ramos, 2015, Dalton Trans., 44, 10847, 10.1039/C5DT00396B
Cho, 2017, Adv. Energy Mater., 7, 1601733, 10.1002/aenm.201601733
O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0
Kearns, 1958, J. Chem. Phys., 29, 950, 10.1063/1.1744619
Jaeger, 1980, J. Am. Chem. Soc., 102, 2592, 10.1021/ja00528a012
Giraudeau, 1980, J. Am. Chem. Soc., 102, 5137, 10.1021/ja00536a001
Fedorov, 1971, Sov. Phys. Semicond.-USSR, 4, 1198
Delacote, 1964, Solid State Commun., 2, 373, 10.1016/0038-1098(64)90185-1
Tang, 1986, Appl. Phys. Lett., 48, 183, 10.1063/1.96937
de la Torre, 2001, Chapter 1 – phthalocyanines: synthesis, supramolecular organization, and physical properties, 1
de la Torre, 2007, Chem. Commun., 2000, 10.1039/B614234F
Walter, 2010, J. Porphyrins Phthalocyanines, 14, 759, 10.1142/S1088424610002689
Yanagi, 1996, J. Phys. Chem., 100, 5447, 10.1021/jp952733p
Oekermann, 1997, J. Appl. Electrochem., 27, 1172, 10.1023/A:1018467516812
Fang, 1997, Chem. Phys. Lett., 270, 145, 10.1016/S0009-2614(97)00333-3
Chau, 1993, J. Phys. Chem., 97, 2690, 10.1021/j100113a034
Darwent, 1982, Coord. Chem. Rev., 44, 83, 10.1016/S0010-8545(00)80518-4
Ohtani, 1986, Photochem. Photobiol., 44, 125, 10.1111/j.1751-1097.1986.tb03575.x
Lazarides, 2014, Chem. Commun., 50, 521, 10.1039/C3CC45025B
Aranyos, 2001, J. Porphyrins Phthalocyanines, 05, 609, 10.1002/jpp.371
Komori, 2002, J. Porphyrins Phthalocyanines, 06, 211, 10.1142/S1088424602000245
Guo, 2014, J. Mol. Struct., 1060, 17, 10.1016/j.molstruc.2013.12.028
Zanotti, 2010, Int. J. Photoenergy, 2010, 1, 10.1155/2010/136807
Park, 2013, ECS J. Solid State Sci. Technol., 2, Q6, 10.1149/2.014301jss
McEvoy, 1994, Sol. Energy Mater. Sol. Cells, 32, 221, 10.1016/0927-0248(94)90260-7
Gerischer, 1968, Electrochim. Acta, 13, 1509, 10.1016/0013-4686(68)80076-3
Grätzel, 2000, Prog. Photovolt: Res. Appl., 8, 171, 10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
Gao, 2008, J. Am. Chem. Soc., 130, 10720, 10.1021/ja801942j
Nazeeruddin, 2013, Mesoscopic dye-sensitized solar cells, 579
Chiba, 2006, Jpn. J. Appl. Phys., 45, L638, 10.1143/JJAP.45.L638
Perera, 2015, Angew. Chem., Int. Ed., 54, 3758, 10.1002/anie.201409877
Ooyama, 2009, Eur. J. Org. Chem., 2009, 2903, 10.1002/ejoc.200900236
Ooyama, 2013, Dyes, solar cells, 1
Giribabu, 2012, Chem. Rec., 12, 306, 10.1002/tcr.201100044
Martinson, 2008, Chem. Eur. J., 14, 4458, 10.1002/chem.200701667
Martsinovich, 2011, Energy Environ. Sci., 4, 4473, 10.1039/c1ee01906f
Bisquert, 2004, J. Phys. Chem. B, 108, 8106, 10.1021/jp0359283
Akimov, 2013, Chem. Rev., 113, 4496, 10.1021/cr3004899
Odobel, 2010, Acc. Chem. Res., 43, 1063, 10.1021/ar900275b
Nikolaou, 2017, J. Mater. Chem. A, 5, 21077, 10.1039/C7TA06500K
Li, 2013, Chem. Soc. Rev., 42, 291, 10.1039/C2CS35257E
Imahori, 2009, Acc. Chem. Res., 42, 1809, 10.1021/ar900034t
Higashino, 2015, Dalton Trans., 44, 448, 10.1039/C4DT02756F
Li, 2010, Phthalocyanines and their analogs applied in dye-sensitized solar cell, 229
Singh, 2014, RSC Adv., 4, 6970, 10.1039/c3ra45170d
Giribabu, 2012, Curr. Sci., 102, 991
Mishra, 2009, Angew. Chem., Int. Ed., 48, 2474, 10.1002/anie.200804709
Clifford, 2012, J. Mater. Chem., 22, 24195, 10.1039/c2jm34289h
Kim, 2013, Chem. Eur. J., 19, 5220, 10.1002/chem.201204343
Kanaparthi, 2012, Tetrahedron, 68, 8383, 10.1016/j.tet.2012.06.064
Joly, 2014, Sci. Rep., 4, 4033, 10.1038/srep04033
Zeng, 2010, Chem. Mater., 22, 1915, 10.1021/cm9036988
Burschka, 2011, J. Am. Chem. Soc., 133, 18042, 10.1021/ja207367t
Yin, 2012, Coord. Chem. Rev., 256, 3008, 10.1016/j.ccr.2012.06.022
Ardo, 2009, Chem. Soc. Rev., 38, 115, 10.1039/B804321N
Chen, 2009, ACS Nano, 3, 3103, 10.1021/nn900756s
Yu, 2010, ACS Nano, 4, 6032, 10.1021/nn101384e
Bessho, 2010, Angew. Chem., Int. Ed., 49, 6646, 10.1002/anie.201002118
Yella, 2011, Science, 334, 629, 10.1126/science.1209688
Hamann, 2011, Energy Environ. Sci., 4, 370, 10.1039/C0EE00251H
Boschloo, 2009, Acc. Chem. Res., 42, 1819, 10.1021/ar900138m
Jono, 2012, J. Phys. Chem. Lett., 3, 3581, 10.1021/jz301589a
Richards, 2012, J. Phys. Chem. Lett., 3, 1980, 10.1021/jz3006755
Boschloo, 2011, J. Phys. Chem. Lett., 2, 3016, 10.1021/jz2014314
Yu, 2010, J. Phys. Chem. C, 114, 10612, 10.1021/jp1001918
Wang, 2007, J. Phys. Chem. C, 111, 15125, 10.1021/jp075305f
Nakade, 2005, J. Phys. Chem. B, 109, 3480, 10.1021/jp0460036
Farnum, 2013, Inorg. Chem., 52, 840, 10.1021/ic302002u
Paulsson, 2006, J. Electroanal. Chem., 586, 56, 10.1016/j.jelechem.2005.09.011
Cong, 2012, Energy Environ. Sci., 5, 9180, 10.1039/c2ee22095d
Wang, 2010, Nature Chem., 2, 385, 10.1038/nchem.610
Feldt, 2010, J. Am. Chem. Soc., 132, 16714, 10.1021/ja1088869
Feldt, 2011, J. Phys. Chem. C, 115, 21500, 10.1021/jp2061392
Hara, 2004, Langmuir, 20, 4205, 10.1021/la0357615
Schlichthörl, 1997, J. Phys. Chem. B, 101, 8141, 10.1021/jp9714126
Zhang, 2011, Phys. Chem. Chem. Phys., 13, 19310, 10.1039/c1cp22832c
Shi, 2005, Vib. Spectrosc., 39, 99, 10.1016/j.vibspec.2005.01.002
Boschloo, 2006, J. Phys. Chem. B, 110, 13144, 10.1021/jp0619641
Neale, 2005, J. Phys. Chem. B, 109, 23183, 10.1021/jp0538666
Lee, 2007, Sol. Energy Mater. Sol. Cells, 91, 1426, 10.1016/j.solmat.2007.03.009
Yum, 2008, Langmuir, 24, 5636, 10.1021/la800087q
Docampo, 2014, Adv. Mat., 26, 4013, 10.1002/adma.201400486
Chung, 2012, Nature, 485, 486, 10.1038/nature11067
Hsu, 2012, Phys. Chem. Chem. Phys., 14, 14099, 10.1039/c2cp41326d
Chen, 2009, Nano Lett., 9, 2487, 10.1021/nl901246g
Bach, 1998, Nature, 395, 583, 10.1038/26936
Listorti, 2010, Energy Environ. Sci., 3, 1573, 10.1039/c0ee00083c
Sanchez Carballo, 2014, Dalton Trans., 43, 15085, 10.1039/C4DT01357C
Cid, 2007, Angew. Chem., Int. Ed., 46, 8358, 10.1002/anie.200703106
Ragoussi, 2012, Angew. Chem., Int. Ed., 51, 4375, 10.1002/anie.201108963
Ragoussi, 2014, ChemPhysChem, 15, 1033, 10.1002/cphc.201301118
Ikeuchi, 2014, Chem. Commun., 50, 1941, 10.1039/c3cc47714b
Harrath, 2018, J. Mol. Model., 24, 10.1007/s00894-018-3821-6
Linares-Flores, 2018, Theor. Chem. Acc., 137, 1, 10.1007/s00214-018-2229-9
Shen, 1995, Thin Solid Films, 257, 144, 10.1016/0040-6090(94)06329-X
Deng, 1998, J. Porphyrins Phthalocyanines, 02, 171, 10.1002/(SICI)1099-1409(199803/04)2:2<171::AID-JPP59>3.0.CO;2-8
He, 2001, Langmuir, 17, 2743, 10.1021/la001651b
Nazeeruddin, 1999, J. Porphyrins Phthalocyanines, 3, 230, 10.1002/(SICI)1099-1409(199903)3:3<230::AID-JPP127>3.0.CO;2-L
Balraju, 2009, Synth. Met., 159, 1325, 10.1016/j.synthmet.2009.03.001
Sevim, 2018, Sol. Energy, 160, 18, 10.1016/j.solener.2017.12.001
He, 2002, J. Am. Chem. Soc., 124, 4922, 10.1021/ja0178012
Reddy, 2007, Angew. Chem., Int. Ed., 46, 373, 10.1002/anie.200603098
Cid, 2009, Chem. Eur. J., 15, 5130, 10.1002/chem.200801778
Giribabu, 2007, Sol. Energy Mater. Sol. Cells, 91, 1611, 10.1016/j.solmat.2007.05.004
Giribabu, 2009, J. Chem. Sci., 121, 75, 10.1007/s12039-009-0008-9
Giribabu, 2013, Dyes Pigm., 98, 518, 10.1016/j.dyepig.2013.04.007
Eu, 2008, Dalton Trans., 5476, 10.1039/b803272f
Nagata, 2008, 692718
Martín-Gomis, 2017, Inorg. Chim. Acta, 468, 327, 10.1016/j.ica.2017.07.043
Mori, 2010, J. Am. Chem. Soc., 132, 4054, 10.1021/ja9109677
Matsuzaki, 2014, J. Phys. Chem. C, 118, 17205, 10.1021/jp500798c
O'Regan, 2008, J. Am. Chem. Soc., 130, 2906, 10.1021/ja078045o
Sampaio, 2014, J. Phys. Chem. Lett., 5, 3265, 10.1021/jz5016444
Kimura, 2012, Angew. Chem., Int. Ed., 51, 4371, 10.1002/anie.201108610
Kimura, 2013, Chem. Eur. J., 19, 7496, 10.1002/chem.201300716
Tejerina, 2016, Chem. Eur. J., 22, 4369, 10.1002/chem.201600166
Tejerina, 2015, Org. Lett., 17, 552, 10.1021/ol503557c
Tejerina, 2017, ChemPlusChem, 82, 132, 10.1002/cplu.201600325
Yildiz, 2018, Sol. Energy, 174, 527, 10.1016/j.solener.2018.09.039
García-Iglesias, 2011, Energy Environ. Sci., 4, 189, 10.1039/C0EE00368A
Qin, 2008, J. Am. Chem. Soc., 130, 9202, 10.1021/ja8024438
Hara, 2005, Adv. Funct. Mater., 15, 246, 10.1002/adfm.200400272
Wang, 2005, J. Phys. Chem. B, 109, 15397, 10.1021/jp052877w
Sharma, 2013, J. Phys. Chem. C, 117, 25397, 10.1021/jp410080a
Silvestri, 2009, J. Porphyrins Phthalocyanines, 13, 369, 10.1142/S1088424609000449
López-Duarte, 2012, Angew. Chem., Int. Ed., 51, 1895, 10.1002/anie.201105950
García-Iglesias, 2011, Chem. Sci., 2, 1145, 10.1039/c0sc00602e
Koops, 2009, J. Am. Chem. Soc., 131, 4808, 10.1021/ja8091278
Ince, 2014, J. Phys. Chem. C, 118, 17166, 10.1021/jp502447y
Suanzes Pita, 2017, ChemPlusChem, 82, 1057, 10.1002/cplu.201700048
Ooyama, 2011, Angew. Chem., Int. Ed., 50, 7429, 10.1002/anie.201102552
Ooyama, 2011, Chem. Eur. J., 17, 14837, 10.1002/chem.201101923
Daphnomili, 2012, RSC Adv., 2, 12899, 10.1039/c2ra22129b
Ooyama, 2013, Chem. Commun., 49, 2548, 10.1039/c3cc40498f
Stangel, 1881, Inorg. Chem., 53, 11871
Ikeuchi, 2015, Chem. Asian J., 10, 2347, 10.1002/asia.201500756
Harima, 2013, J. Phys. Chem. C, 117, 16364, 10.1021/jp405835y
Sarker, 2012, Dyes Pigm., 92, 1160, 10.1016/j.dyepig.2011.07.002
Ramakrishna, 2006, J. Phys. Chem. B, 110, 9012, 10.1021/jp0552630
Kar, 2009, J. Phys. Chem. C, 113, 7970, 10.1021/jp901135n
Barea, 2010, Energy Environ. Sci., 3, 1985, 10.1039/c0ee00185f
Brennan, 2013, Chem. Mater., 25, 4354, 10.1021/cm402609k
Jiao, 2013, Adv. Funct. Mater., 23, 424, 10.1002/adfm.201201831
Hart, 2013, ACS Appl. Mater. Interfaces, 5, 5314, 10.1021/am401201q
Rochford, 2007, J. Am. Chem. Soc., 129, 4655, 10.1021/ja068218u
Ashokkumar, 2014, Phys. Chem. Chem. Phys., 16, 1015, 10.1039/C3CP53678E
Virkki, 2017, J. Phys. Chem. C, 121, 9594, 10.1021/acs.jpcc.7b01562
Hakola, 2016, J. Phys. Chem. C, 120, 7044, 10.1021/acs.jpcc.6b01583
Virkki, 2018, R. Soc. Open Sci., 5, 10.1098/rsos.180323
Virkki, 2018, ACS Omega, 3, 4947, 10.1021/acsomega.8b00600
Hakola, 2014, Chem. Phys. Lett., 592, 47, 10.1016/j.cplett.2013.11.028
Antila, 2014, J. Phys. Chem. C, 118, 7772, 10.1021/jp4124277
Wang, 2012, Adv. Funct. Mater., 22, 2783, 10.1002/adfm.201102550
Kobayashi, 2011, J. Am. Chem. Soc., 133, 19642, 10.1021/ja208481q
Qian, 2010, Chem. Asian J., 5, 1006, 10.1002/asia.200900596
Ono, 2009, Sol. Energy Mater. Sol. Cells, 93, 831, 10.1016/j.solmat.2008.09.038
Maeda, 2011, Org. Lett., 13, 5994, 10.1021/ol2024345
Saji, 2010, J. Photochem. Photobiol. A, 212, 81, 10.1016/j.jphotochem.2010.03.012
Zhang, 2012, Bull. Korean Chem. Soc., 33, 1225, 10.5012/bkcs.2012.33.4.1225
Singh, 2013, Inorg. Chim. Acta, 407, 289, 10.1016/j.ica.2013.07.052
Zhang, 2014, Asian J. Chem., 26, 2229, 10.14233/ajchem.2014.15662
Li, 2013, RSC Adv., 3, 545, 10.1039/C2RA21496B
Yong, 2011, Energy, 1, 12
Lee, 2007, Macromol. Rapid Commun., 28, 1657, 10.1002/marc.200700167
Guo, 2006, J. Am. Chem. Soc., 128, 14820, 10.1021/ja063796w
Millard, 1985, J. Phys. Chem., 89, 2976, 10.1021/j100260a004
Giribabu, 2011, Sol. Energy, 85, 1204, 10.1016/j.solener.2011.02.027
Zhou, 2011, Dyes Pigm., 91, 404, 10.1016/j.dyepig.2011.05.017
Wang, 2014, New J. Chem., 38, 3227, 10.1039/C4NJ00651H
Lu, 2013, J. Mater. Chem. A, 1, 10008, 10.1039/c3ta11870c
Eu, 2007, J. Phys. Chem. C, 111, 3528, 10.1021/jp067290b
Huang, 2012, Synth. Met., 162, 2316, 10.1016/j.synthmet.2012.11.007
Ince, 2012, Chem. Eur. J., 18, 6343, 10.1002/chem.201200020
Cogal, 2015, Dyes Pigm., 113, 474, 10.1016/j.dyepig.2014.09.018
Yamamoto, 2016, Chem. Eur. J., 22, 18760, 10.1002/chem.201603705
Tejerina, 2016, J. Porphyrins Phthalocyanines, 20, 1361, 10.1142/S1088424616501121
Kobayashi, 2004, Chem. Eur. J., 10, 6294, 10.1002/chem.200400275
Li, 2002, New J. Chem., 26, 1076, 10.1039/b201273a
Yu, 2012, ChemPlusChem, 77, 1022, 10.1002/cplu.201200219
Yu, 2013, Electrochim. Acta, 111, 344, 10.1016/j.electacta.2013.08.031
Yu, 2014, Dalton Trans., 43, 8421, 10.1039/C4DT00411F
Ikeuchi, 2016, Inorg. Chem., 55, 5014, 10.1021/acs.inorgchem.6b00562
Fazio, 2017, ChemistryOpen, 6, 121, 10.1002/open.201600113
Nazeeruddin, 1998, Chem. Commun., 719, 10.1039/a708834e
Yanagisawa, 2002, J. Porphyrins Phthalocyanines, 06, 217, 10.1142/S1088424602000257
Rawling, 2009, Inorg. Chem., 48, 3215, 10.1021/ic802087n
Yanagisawa, 2004, J. Porphyrins Phthalocyanines, 8, 1228, 10.1142/S1088424604000581
Morandeira, 2007, J. Am. Chem. Soc., 129, 9250, 10.1021/ja0722980
Macor, 2009, Energy Environ. Sci., 2, 529, 10.1039/b822954f
Martín-Gomisa, 2011, J. Porphyrins Phthalocyanines, 15, 1004, 10.1142/S1088424611003914
Lim, 2013, Org. Lett., 15, 784, 10.1021/ol303436q
Lin, 2014, Sol. Energy Mater. Sol. Cells, 126, 155, 10.1016/j.solmat.2014.03.025
Lin, 2014, J. Phys. Chem. B, 118, 14027, 10.1021/jp5038987
Palomares, 2004, Chem. Commun., 2112, 10.1039/B407860H
Rodríguez-Morgade, 2013, J. Porphyrins Phthalocyanines, 17, 814, 10.1142/S1088424613500454
Falber, 2009, Eur. J. Inorg. Chem., 2009, 2459, 10.1002/ejic.200900284
Radivojevic, 2012, J. Phys. Chem. C, 116, 15867, 10.1021/jp301853d
Balasingam, 2013, Chem. Commun., 49, 1471, 10.1039/C2CC37616D
Yum, 2007, Chem. Commun., 4680, 10.1039/b710759e
Ehret, 2001, J. Phys. Chem. B, 105, 9960, 10.1021/jp011952+
Robertson, 2008, Angew. Chem., Int. Ed., 47, 1012, 10.1002/anie.200704538
Choi, 2008, Angew. Chem., Int. Ed., 47, 8259, 10.1002/anie.200802852
Perera, 2005, Sol. Energy Mater. Sol. Cells, 85, 91
Clifford, 2004, J. Am. Chem. Soc., 126, 5670, 10.1021/ja049705h
Hardin, 2011, J. Am. Chem. Soc., 133, 10662, 10.1021/ja2042172
Griffith, 2011, Appl. Phys. Lett., 98, 10.1063/1.3576904
Inakazu, 2008, Appl. Phys. Lett., 93, 10.1063/1.2976677
Lee, 2009, Nat. Mat., 8, 665, 10.1038/nmat2475
Deng, 1997, J. Photochem. Photobiol. A, 110, 47, 10.1016/S1010-6030(97)00139-1
Kim, 2006, J. Am. Chem. Soc., 128, 16701, 10.1021/ja066376f
Clifford, 2011, J. Mater. Chem., 21, 1693, 10.1039/C0JM03661G
Jin, 2013, J. Mater. Sci., 48, 4883, 10.1007/s10853-013-7268-y
Yu, 2014, ACS Sustainable Chem. Eng., 2, 718, 10.1021/sc400532g
Shibayama, 2014, Chem. Commun., 50, 6398, 10.1039/C3CC49461F
Hilal, 2018, ACS Appl. Energy Mater., 1, 2776, 10.1021/acsaem.8b00448
Panda, 2014, Chem. Commun., 50, 5358, 10.1039/C3CC47498D
Rahman, 2015, Nanoscale, 7, 3526, 10.1039/C4NR06645F
Lee, 2013, Chem. Eur. J., 19, 10280, 10.1002/chem.201300953
Itzhakov, 2011, Adv. Energy Mater., 1, 626, 10.1002/aenm.201100110
Lakowicz, 2006
Hardin, 2009, Nat. Photon., 3, 406, 10.1038/nphoton.2009.96
Shankar, 2009, ACS Nano, 3, 788, 10.1021/nn900090x
Feng, 2008, Nano Lett., 8, 3781, 10.1021/nl802096a
Hardin, 2010, Nano Lett., 10, 3077, 10.1021/nl1016688
Yum, 2011, ChemPhysChem, 12, 657, 10.1002/cphc.201000854
Warnan, 2012, Chem. Commun., 48, 675, 10.1039/C1CC16066D
Choi, 2014, J. Phys. Chem. C, 118, 16319, 10.1021/jp407475b
Brown, 2011, J. Phys. Chem. C, 115, 23204, 10.1021/jp207075z
Greene, 2007, J. Phys. Chem. C, 111, 18451, 10.1021/jp077593l
Na, 2008, Electrochim. Acta, 53, 2560, 10.1016/j.electacta.2007.10.041
Kudo, 2007, Appl. Phys. Lett., 90, 10.1063/1.2736192
Zhu, 2009, Adv. Mater., 21, 994, 10.1002/adma.200802388
Lee, 2011, J. Power Sources, 196, 596, 10.1016/j.jpowsour.2010.06.096
Humphry-Baker, 2012, Nano Lett., 12, 634, 10.1021/nl203377r
Driscoll, 2010, Nano Lett., 10, 4981, 10.1021/nl103087s
Semonin, 2012, Mater. Today, 15, 508, 10.1016/S1369-7021(12)70220-1
Gao, 2018, Spectrochim. Acta, Part A, 195, 176, 10.1016/j.saa.2018.01.065
Lee, 2009, Adv. Funct. Mater., 19, 2735, 10.1002/adfm.200900081
Mandal, 2018, ACS Omega, 3, 10048, 10.1021/acsomega.8b01623
Blas-Ferrando, 2015, Adv. Funct. Mater., 25, 3220, 10.1002/adfm.201500553
Blas-Ferrando, 2015, Chem. Commun., 51, 1732, 10.1039/C4CC08104H
Huang, 2012, J. Phys. D: Appl. Phys., 45
Langmar, 2015, Angew. Chem., Int. Ed., 54, 7688, 10.1002/anie.201501550
Langmar, 2016, Nanoscale, 8, 17963, 10.1039/C6NR05507A
Langmar, 2018, J. Mat. Chem. C, 6, 5176, 10.1039/C8TC00769A
Langmar, 2018, ACS Appl. Energy Mater.