Phthalocyanines for dye-sensitized solar cells

Coordination Chemistry Reviews - Tập 381 - Trang 1-64 - 2019
Maxence Urbani1,2, Maria-Eleni Ragoussi1, Mohammad Khaja Nazeeruddin3, Tomás Torres1,2,4
1Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
2IMDEA-Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain
3Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL, Valais Wallis, Rue de l’Industrie 17, 1950 Sion, Switzerland
4Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain

Tài liệu tham khảo

The Porphyrin Handbook: Phthalocyanines: Spectroscopic and Electrochemical Characterization: 16, Kadish, Karl; Guilard, Roger; Smith, Kevin M. ed., Academic Press, San Diego, 2003. Leznoff, 1989 Claessens, 2008, Chem. Rec., 8, 75, 10.1002/tcr.20139 Bottari, 2011, Chem. Rev., 110, 6768, 10.1021/cr900254z Bottari, 2015, Acc. Chem. Res., 48, 900, 10.1021/ar5004384 Bottari, 2013, Covalent, donor-acceptor ensembles based on phthalocyanines and carbon nanostructures, 163 Snow, 2003, 109-Phthalocyanine aggregation, 129 Kameyama, 2005, Angew. Chem., Int. Ed., 44, 4763, 10.1002/anie.200501199 Esenpınar, 2013, J. Photochem. Photobiol. A, 213, 171, 10.1016/j.jphotochem.2010.05.021 Martinez-Diaz, 2010, Chem. Commun., 46, 7090, 10.1039/c0cc02213f Ragoussi, 2013, Eur. J. Org. Chem., 2013, 6475, 10.1002/ejoc.201301009 Martin-Gomis, 2014, J. Mater. Chem. A, 2, 15672, 10.1039/C4TA01894J Brogdon, 2018, ChemSusChem, 11, 86, 10.1002/cssc.201701441 Sorokin, 2013, Chem. Rev., 113, 8152, 10.1021/cr4000072 DeRosa, 2002, Coord. Chem. Rev., 233–234, 351, 10.1016/S0010-8545(02)00034-6 Rodríguez-Morgade, 2004, J. Porphyrins Phthalocyanines, 08, 1129, 10.1142/S1088424604000490 Fernández-Ariza, 2017, ChemPhotoChem, 1, 164, 10.1002/cptc.201600004 Fernández-Ariza, 2018, Chem. Eur. J., 24, 2618, 10.1002/chem.201705242 Ragoussi, 2015, Chem. Commun., 51, 3957, 10.1039/C4CC09888A Lewis, 2006, Proc. Natl. Acad. Sci. U.S.A., 103, 15729, 10.1073/pnas.0603395103 Green, 2013, Phil. Trans. R. Soc. A, 371, 1, 10.1098/rsta.2011.0413 Green, 2013, Prog. Photovolt: Res. Appl., 21, 827, 10.1002/pip.2404 Peter, 2011, Phil. Trans. R. Soc. A, 369, 1840, 10.1098/rsta.2010.0348 Beaujuge, 2011, J. Am. Chem. Soc., 133, 20009, 10.1021/ja2073643 Urbani, 2014, Chem. Rev., 114, 12330, 10.1021/cr5001964 Grätzel, 2009, Acc. Chem. Res., 42, 1788, 10.1021/ar900141y Hardin, 2012, Nat. Photon., 6, 162, 10.1038/nphoton.2012.22 Hagfeldt, 2010, Chem. Rev., 110, 6595, 10.1021/cr900356p Zhang, 2013, Energy Environ. Sci., 6, 1443, 10.1039/c3ee24453a Jung, 2013, J. Phys. Chem. Lett., 4, 1682, 10.1021/jz400112n Nazeeruddin, 2011, Sol. Energy, 85, 1172, 10.1016/j.solener.2011.01.018 Saliba, 2018, Angew. Chem., 130, 2582, 10.1002/ange.201703226 Xiao, 2017, Adv. Energy Mater., 7, 1700491, 10.1002/aenm.201700491 Calió, 2016, Angew. Chem., Int. Ed., 55, 14522, 10.1002/anie.201601757 Ameen, 2016, ChemSusChem, 9, 10, 10.1002/cssc.201501228 Docampo, 2013, Nat. Commun., 4, 1, 10.1038/ncomms3761 Green, 2014, Nat. Photon., 8, 506, 10.1038/nphoton.2014.134 Zhang, 2015, Nat. Commun., 6, 1 Burschka, 2013, Nature, 499, 316, 10.1038/nature12340 Hodes, 2013, Science, 342, 317, 10.1126/science.1245473 Gao, 2014, Energy Environ. Sci., 7, 2448, 10.1039/C4EE00942H Lee, 2012, Science, 338, 643, 10.1126/science.1228604 Kazim, 2014, Angew. Chem., Int. Ed., 53, 2812, 10.1002/anie.201308719 He, 2014, J. Mater. Chem. A, 2, 5994, 10.1039/C3TA14160H Giorgi, 2014, J. Mater. Chem. A, 3, 8981, 10.1039/C4TA05046K Salim, 2014, J. Mater. Chem. A, 3, 8943, 10.1039/C4TA05226A Niu, 2015, J. Mater. Chem. A, 3, 8970, 10.1039/C4TA04994B Liu, 2014, Nat. Photon., 8, 133, 10.1038/nphoton.2013.342 Green, 2017, ACS Energy Lett., 2, 822, 10.1021/acsenergylett.7b00137 Seo, 2016, Acc. Chem. Res., 49, 562, 10.1021/acs.accounts.5b00444 Rong, 2015, Adv. Energy Mater., 5, 1501066, 10.1002/aenm.201501066 Grancini, 2017, Nat. Commun., 8, 15684, 10.1038/ncomms15684 Mathew, 2014, Nat. Chem., 6, 242, 10.1038/nchem.1861 Yella, 2014, Angew. Chem., Int. Ed., 53, 2973, 10.1002/anie.201309343 Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F Tan, 2017, Science, 355, 722, 10.1126/science.aai9081 Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557 Saliba, 2016, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J Kumar, 2015, RSC Adv., 5, 3786, 10.1039/C4RA14321C Javier Ramos, 2015, Dalton Trans., 44, 10847, 10.1039/C5DT00396B Cho, 2017, Adv. Energy Mater., 7, 1601733, 10.1002/aenm.201601733 O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0 Kearns, 1958, J. Chem. Phys., 29, 950, 10.1063/1.1744619 Jaeger, 1980, J. Am. Chem. Soc., 102, 2592, 10.1021/ja00528a012 Giraudeau, 1980, J. Am. Chem. Soc., 102, 5137, 10.1021/ja00536a001 Fedorov, 1971, Sov. Phys. Semicond.-USSR, 4, 1198 Delacote, 1964, Solid State Commun., 2, 373, 10.1016/0038-1098(64)90185-1 Tang, 1986, Appl. Phys. Lett., 48, 183, 10.1063/1.96937 de la Torre, 2001, Chapter 1 – phthalocyanines: synthesis, supramolecular organization, and physical properties, 1 de la Torre, 2007, Chem. Commun., 2000, 10.1039/B614234F Walter, 2010, J. Porphyrins Phthalocyanines, 14, 759, 10.1142/S1088424610002689 Yanagi, 1996, J. Phys. Chem., 100, 5447, 10.1021/jp952733p Oekermann, 1997, J. Appl. Electrochem., 27, 1172, 10.1023/A:1018467516812 Fang, 1997, Chem. Phys. Lett., 270, 145, 10.1016/S0009-2614(97)00333-3 Chau, 1993, J. Phys. Chem., 97, 2690, 10.1021/j100113a034 Darwent, 1982, Coord. Chem. Rev., 44, 83, 10.1016/S0010-8545(00)80518-4 Ohtani, 1986, Photochem. Photobiol., 44, 125, 10.1111/j.1751-1097.1986.tb03575.x Lazarides, 2014, Chem. Commun., 50, 521, 10.1039/C3CC45025B Aranyos, 2001, J. Porphyrins Phthalocyanines, 05, 609, 10.1002/jpp.371 Komori, 2002, J. Porphyrins Phthalocyanines, 06, 211, 10.1142/S1088424602000245 Guo, 2014, J. Mol. Struct., 1060, 17, 10.1016/j.molstruc.2013.12.028 Zanotti, 2010, Int. J. Photoenergy, 2010, 1, 10.1155/2010/136807 Park, 2013, ECS J. Solid State Sci. Technol., 2, Q6, 10.1149/2.014301jss McEvoy, 1994, Sol. Energy Mater. Sol. Cells, 32, 221, 10.1016/0927-0248(94)90260-7 Gerischer, 1968, Electrochim. Acta, 13, 1509, 10.1016/0013-4686(68)80076-3 Grätzel, 2000, Prog. Photovolt: Res. Appl., 8, 171, 10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U Gao, 2008, J. Am. Chem. Soc., 130, 10720, 10.1021/ja801942j Nazeeruddin, 2013, Mesoscopic dye-sensitized solar cells, 579 Chiba, 2006, Jpn. J. Appl. Phys., 45, L638, 10.1143/JJAP.45.L638 Perera, 2015, Angew. Chem., Int. Ed., 54, 3758, 10.1002/anie.201409877 Ooyama, 2009, Eur. J. Org. Chem., 2009, 2903, 10.1002/ejoc.200900236 Ooyama, 2013, Dyes, solar cells, 1 Giribabu, 2012, Chem. Rec., 12, 306, 10.1002/tcr.201100044 Martinson, 2008, Chem. Eur. J., 14, 4458, 10.1002/chem.200701667 Martsinovich, 2011, Energy Environ. Sci., 4, 4473, 10.1039/c1ee01906f Bisquert, 2004, J. Phys. Chem. B, 108, 8106, 10.1021/jp0359283 Akimov, 2013, Chem. Rev., 113, 4496, 10.1021/cr3004899 Odobel, 2010, Acc. Chem. Res., 43, 1063, 10.1021/ar900275b Nikolaou, 2017, J. Mater. Chem. A, 5, 21077, 10.1039/C7TA06500K Li, 2013, Chem. Soc. Rev., 42, 291, 10.1039/C2CS35257E Imahori, 2009, Acc. Chem. Res., 42, 1809, 10.1021/ar900034t Higashino, 2015, Dalton Trans., 44, 448, 10.1039/C4DT02756F Li, 2010, Phthalocyanines and their analogs applied in dye-sensitized solar cell, 229 Singh, 2014, RSC Adv., 4, 6970, 10.1039/c3ra45170d Giribabu, 2012, Curr. Sci., 102, 991 Mishra, 2009, Angew. Chem., Int. Ed., 48, 2474, 10.1002/anie.200804709 Clifford, 2012, J. Mater. Chem., 22, 24195, 10.1039/c2jm34289h Kim, 2013, Chem. Eur. J., 19, 5220, 10.1002/chem.201204343 Kanaparthi, 2012, Tetrahedron, 68, 8383, 10.1016/j.tet.2012.06.064 Joly, 2014, Sci. Rep., 4, 4033, 10.1038/srep04033 Zeng, 2010, Chem. Mater., 22, 1915, 10.1021/cm9036988 Burschka, 2011, J. Am. Chem. Soc., 133, 18042, 10.1021/ja207367t Yin, 2012, Coord. Chem. Rev., 256, 3008, 10.1016/j.ccr.2012.06.022 Ardo, 2009, Chem. Soc. Rev., 38, 115, 10.1039/B804321N Chen, 2009, ACS Nano, 3, 3103, 10.1021/nn900756s Yu, 2010, ACS Nano, 4, 6032, 10.1021/nn101384e Bessho, 2010, Angew. Chem., Int. Ed., 49, 6646, 10.1002/anie.201002118 Yella, 2011, Science, 334, 629, 10.1126/science.1209688 Hamann, 2011, Energy Environ. Sci., 4, 370, 10.1039/C0EE00251H Boschloo, 2009, Acc. Chem. Res., 42, 1819, 10.1021/ar900138m Jono, 2012, J. Phys. Chem. Lett., 3, 3581, 10.1021/jz301589a Richards, 2012, J. Phys. Chem. Lett., 3, 1980, 10.1021/jz3006755 Boschloo, 2011, J. Phys. Chem. Lett., 2, 3016, 10.1021/jz2014314 Yu, 2010, J. Phys. Chem. C, 114, 10612, 10.1021/jp1001918 Wang, 2007, J. Phys. Chem. C, 111, 15125, 10.1021/jp075305f Nakade, 2005, J. Phys. Chem. B, 109, 3480, 10.1021/jp0460036 Farnum, 2013, Inorg. Chem., 52, 840, 10.1021/ic302002u Paulsson, 2006, J. Electroanal. Chem., 586, 56, 10.1016/j.jelechem.2005.09.011 Cong, 2012, Energy Environ. Sci., 5, 9180, 10.1039/c2ee22095d Wang, 2010, Nature Chem., 2, 385, 10.1038/nchem.610 Feldt, 2010, J. Am. Chem. Soc., 132, 16714, 10.1021/ja1088869 Feldt, 2011, J. Phys. Chem. C, 115, 21500, 10.1021/jp2061392 Hara, 2004, Langmuir, 20, 4205, 10.1021/la0357615 Schlichthörl, 1997, J. Phys. Chem. B, 101, 8141, 10.1021/jp9714126 Zhang, 2011, Phys. Chem. Chem. Phys., 13, 19310, 10.1039/c1cp22832c Shi, 2005, Vib. Spectrosc., 39, 99, 10.1016/j.vibspec.2005.01.002 Boschloo, 2006, J. Phys. Chem. B, 110, 13144, 10.1021/jp0619641 Neale, 2005, J. Phys. Chem. B, 109, 23183, 10.1021/jp0538666 Lee, 2007, Sol. Energy Mater. Sol. Cells, 91, 1426, 10.1016/j.solmat.2007.03.009 Yum, 2008, Langmuir, 24, 5636, 10.1021/la800087q Docampo, 2014, Adv. Mat., 26, 4013, 10.1002/adma.201400486 Chung, 2012, Nature, 485, 486, 10.1038/nature11067 Hsu, 2012, Phys. Chem. Chem. Phys., 14, 14099, 10.1039/c2cp41326d Chen, 2009, Nano Lett., 9, 2487, 10.1021/nl901246g Bach, 1998, Nature, 395, 583, 10.1038/26936 Listorti, 2010, Energy Environ. Sci., 3, 1573, 10.1039/c0ee00083c Sanchez Carballo, 2014, Dalton Trans., 43, 15085, 10.1039/C4DT01357C Cid, 2007, Angew. Chem., Int. Ed., 46, 8358, 10.1002/anie.200703106 Ragoussi, 2012, Angew. Chem., Int. Ed., 51, 4375, 10.1002/anie.201108963 Ragoussi, 2014, ChemPhysChem, 15, 1033, 10.1002/cphc.201301118 Ikeuchi, 2014, Chem. Commun., 50, 1941, 10.1039/c3cc47714b Harrath, 2018, J. Mol. Model., 24, 10.1007/s00894-018-3821-6 Linares-Flores, 2018, Theor. Chem. Acc., 137, 1, 10.1007/s00214-018-2229-9 Shen, 1995, Thin Solid Films, 257, 144, 10.1016/0040-6090(94)06329-X Deng, 1998, J. Porphyrins Phthalocyanines, 02, 171, 10.1002/(SICI)1099-1409(199803/04)2:2<171::AID-JPP59>3.0.CO;2-8 He, 2001, Langmuir, 17, 2743, 10.1021/la001651b Nazeeruddin, 1999, J. Porphyrins Phthalocyanines, 3, 230, 10.1002/(SICI)1099-1409(199903)3:3<230::AID-JPP127>3.0.CO;2-L Balraju, 2009, Synth. Met., 159, 1325, 10.1016/j.synthmet.2009.03.001 Sevim, 2018, Sol. Energy, 160, 18, 10.1016/j.solener.2017.12.001 He, 2002, J. Am. Chem. Soc., 124, 4922, 10.1021/ja0178012 Reddy, 2007, Angew. Chem., Int. Ed., 46, 373, 10.1002/anie.200603098 Cid, 2009, Chem. Eur. J., 15, 5130, 10.1002/chem.200801778 Giribabu, 2007, Sol. Energy Mater. Sol. Cells, 91, 1611, 10.1016/j.solmat.2007.05.004 Giribabu, 2009, J. Chem. Sci., 121, 75, 10.1007/s12039-009-0008-9 Giribabu, 2013, Dyes Pigm., 98, 518, 10.1016/j.dyepig.2013.04.007 Eu, 2008, Dalton Trans., 5476, 10.1039/b803272f Nagata, 2008, 692718 Martín-Gomis, 2017, Inorg. Chim. Acta, 468, 327, 10.1016/j.ica.2017.07.043 Mori, 2010, J. Am. Chem. Soc., 132, 4054, 10.1021/ja9109677 Matsuzaki, 2014, J. Phys. Chem. C, 118, 17205, 10.1021/jp500798c O'Regan, 2008, J. Am. Chem. Soc., 130, 2906, 10.1021/ja078045o Sampaio, 2014, J. Phys. Chem. Lett., 5, 3265, 10.1021/jz5016444 Kimura, 2012, Angew. Chem., Int. Ed., 51, 4371, 10.1002/anie.201108610 Kimura, 2013, Chem. Eur. J., 19, 7496, 10.1002/chem.201300716 Tejerina, 2016, Chem. Eur. J., 22, 4369, 10.1002/chem.201600166 Tejerina, 2015, Org. Lett., 17, 552, 10.1021/ol503557c Tejerina, 2017, ChemPlusChem, 82, 132, 10.1002/cplu.201600325 Yildiz, 2018, Sol. Energy, 174, 527, 10.1016/j.solener.2018.09.039 García-Iglesias, 2011, Energy Environ. Sci., 4, 189, 10.1039/C0EE00368A Qin, 2008, J. Am. Chem. Soc., 130, 9202, 10.1021/ja8024438 Hara, 2005, Adv. Funct. Mater., 15, 246, 10.1002/adfm.200400272 Wang, 2005, J. Phys. Chem. B, 109, 15397, 10.1021/jp052877w Sharma, 2013, J. Phys. Chem. C, 117, 25397, 10.1021/jp410080a Silvestri, 2009, J. Porphyrins Phthalocyanines, 13, 369, 10.1142/S1088424609000449 López-Duarte, 2012, Angew. Chem., Int. Ed., 51, 1895, 10.1002/anie.201105950 García-Iglesias, 2011, Chem. Sci., 2, 1145, 10.1039/c0sc00602e Koops, 2009, J. Am. Chem. Soc., 131, 4808, 10.1021/ja8091278 Ince, 2014, J. Phys. Chem. C, 118, 17166, 10.1021/jp502447y Suanzes Pita, 2017, ChemPlusChem, 82, 1057, 10.1002/cplu.201700048 Ooyama, 2011, Angew. Chem., Int. Ed., 50, 7429, 10.1002/anie.201102552 Ooyama, 2011, Chem. Eur. J., 17, 14837, 10.1002/chem.201101923 Daphnomili, 2012, RSC Adv., 2, 12899, 10.1039/c2ra22129b Ooyama, 2013, Chem. Commun., 49, 2548, 10.1039/c3cc40498f Stangel, 1881, Inorg. Chem., 53, 11871 Ikeuchi, 2015, Chem. Asian J., 10, 2347, 10.1002/asia.201500756 Harima, 2013, J. Phys. Chem. C, 117, 16364, 10.1021/jp405835y Sarker, 2012, Dyes Pigm., 92, 1160, 10.1016/j.dyepig.2011.07.002 Ramakrishna, 2006, J. Phys. Chem. B, 110, 9012, 10.1021/jp0552630 Kar, 2009, J. Phys. Chem. C, 113, 7970, 10.1021/jp901135n Barea, 2010, Energy Environ. Sci., 3, 1985, 10.1039/c0ee00185f Brennan, 2013, Chem. Mater., 25, 4354, 10.1021/cm402609k Jiao, 2013, Adv. Funct. Mater., 23, 424, 10.1002/adfm.201201831 Hart, 2013, ACS Appl. Mater. Interfaces, 5, 5314, 10.1021/am401201q Rochford, 2007, J. Am. Chem. Soc., 129, 4655, 10.1021/ja068218u Ashokkumar, 2014, Phys. Chem. Chem. Phys., 16, 1015, 10.1039/C3CP53678E Virkki, 2017, J. Phys. Chem. C, 121, 9594, 10.1021/acs.jpcc.7b01562 Hakola, 2016, J. Phys. Chem. C, 120, 7044, 10.1021/acs.jpcc.6b01583 Virkki, 2018, R. Soc. Open Sci., 5, 10.1098/rsos.180323 Virkki, 2018, ACS Omega, 3, 4947, 10.1021/acsomega.8b00600 Hakola, 2014, Chem. Phys. Lett., 592, 47, 10.1016/j.cplett.2013.11.028 Antila, 2014, J. Phys. Chem. C, 118, 7772, 10.1021/jp4124277 Wang, 2012, Adv. Funct. Mater., 22, 2783, 10.1002/adfm.201102550 Kobayashi, 2011, J. Am. Chem. Soc., 133, 19642, 10.1021/ja208481q Qian, 2010, Chem. Asian J., 5, 1006, 10.1002/asia.200900596 Ono, 2009, Sol. Energy Mater. Sol. Cells, 93, 831, 10.1016/j.solmat.2008.09.038 Maeda, 2011, Org. Lett., 13, 5994, 10.1021/ol2024345 Saji, 2010, J. Photochem. Photobiol. A, 212, 81, 10.1016/j.jphotochem.2010.03.012 Zhang, 2012, Bull. Korean Chem. Soc., 33, 1225, 10.5012/bkcs.2012.33.4.1225 Singh, 2013, Inorg. Chim. Acta, 407, 289, 10.1016/j.ica.2013.07.052 Zhang, 2014, Asian J. Chem., 26, 2229, 10.14233/ajchem.2014.15662 Li, 2013, RSC Adv., 3, 545, 10.1039/C2RA21496B Yong, 2011, Energy, 1, 12 Lee, 2007, Macromol. Rapid Commun., 28, 1657, 10.1002/marc.200700167 Guo, 2006, J. Am. Chem. Soc., 128, 14820, 10.1021/ja063796w Millard, 1985, J. Phys. Chem., 89, 2976, 10.1021/j100260a004 Giribabu, 2011, Sol. Energy, 85, 1204, 10.1016/j.solener.2011.02.027 Zhou, 2011, Dyes Pigm., 91, 404, 10.1016/j.dyepig.2011.05.017 Wang, 2014, New J. Chem., 38, 3227, 10.1039/C4NJ00651H Lu, 2013, J. Mater. Chem. A, 1, 10008, 10.1039/c3ta11870c Eu, 2007, J. Phys. Chem. C, 111, 3528, 10.1021/jp067290b Huang, 2012, Synth. Met., 162, 2316, 10.1016/j.synthmet.2012.11.007 Ince, 2012, Chem. Eur. J., 18, 6343, 10.1002/chem.201200020 Cogal, 2015, Dyes Pigm., 113, 474, 10.1016/j.dyepig.2014.09.018 Yamamoto, 2016, Chem. Eur. J., 22, 18760, 10.1002/chem.201603705 Tejerina, 2016, J. Porphyrins Phthalocyanines, 20, 1361, 10.1142/S1088424616501121 Kobayashi, 2004, Chem. Eur. J., 10, 6294, 10.1002/chem.200400275 Li, 2002, New J. Chem., 26, 1076, 10.1039/b201273a Yu, 2012, ChemPlusChem, 77, 1022, 10.1002/cplu.201200219 Yu, 2013, Electrochim. Acta, 111, 344, 10.1016/j.electacta.2013.08.031 Yu, 2014, Dalton Trans., 43, 8421, 10.1039/C4DT00411F Ikeuchi, 2016, Inorg. Chem., 55, 5014, 10.1021/acs.inorgchem.6b00562 Fazio, 2017, ChemistryOpen, 6, 121, 10.1002/open.201600113 Nazeeruddin, 1998, Chem. Commun., 719, 10.1039/a708834e Yanagisawa, 2002, J. Porphyrins Phthalocyanines, 06, 217, 10.1142/S1088424602000257 Rawling, 2009, Inorg. Chem., 48, 3215, 10.1021/ic802087n Yanagisawa, 2004, J. Porphyrins Phthalocyanines, 8, 1228, 10.1142/S1088424604000581 Morandeira, 2007, J. Am. Chem. Soc., 129, 9250, 10.1021/ja0722980 Macor, 2009, Energy Environ. Sci., 2, 529, 10.1039/b822954f Martín-Gomisa, 2011, J. Porphyrins Phthalocyanines, 15, 1004, 10.1142/S1088424611003914 Lim, 2013, Org. Lett., 15, 784, 10.1021/ol303436q Lin, 2014, Sol. Energy Mater. Sol. Cells, 126, 155, 10.1016/j.solmat.2014.03.025 Lin, 2014, J. Phys. Chem. B, 118, 14027, 10.1021/jp5038987 Palomares, 2004, Chem. Commun., 2112, 10.1039/B407860H Rodríguez-Morgade, 2013, J. Porphyrins Phthalocyanines, 17, 814, 10.1142/S1088424613500454 Falber, 2009, Eur. J. Inorg. Chem., 2009, 2459, 10.1002/ejic.200900284 Radivojevic, 2012, J. Phys. Chem. C, 116, 15867, 10.1021/jp301853d Balasingam, 2013, Chem. Commun., 49, 1471, 10.1039/C2CC37616D Yum, 2007, Chem. Commun., 4680, 10.1039/b710759e Ehret, 2001, J. Phys. Chem. B, 105, 9960, 10.1021/jp011952+ Robertson, 2008, Angew. Chem., Int. Ed., 47, 1012, 10.1002/anie.200704538 Choi, 2008, Angew. Chem., Int. Ed., 47, 8259, 10.1002/anie.200802852 Perera, 2005, Sol. Energy Mater. Sol. Cells, 85, 91 Clifford, 2004, J. Am. Chem. Soc., 126, 5670, 10.1021/ja049705h Hardin, 2011, J. Am. Chem. Soc., 133, 10662, 10.1021/ja2042172 Griffith, 2011, Appl. Phys. Lett., 98, 10.1063/1.3576904 Inakazu, 2008, Appl. Phys. Lett., 93, 10.1063/1.2976677 Lee, 2009, Nat. Mat., 8, 665, 10.1038/nmat2475 Deng, 1997, J. Photochem. Photobiol. A, 110, 47, 10.1016/S1010-6030(97)00139-1 Kim, 2006, J. Am. Chem. Soc., 128, 16701, 10.1021/ja066376f Clifford, 2011, J. Mater. Chem., 21, 1693, 10.1039/C0JM03661G Jin, 2013, J. Mater. Sci., 48, 4883, 10.1007/s10853-013-7268-y Yu, 2014, ACS Sustainable Chem. Eng., 2, 718, 10.1021/sc400532g Shibayama, 2014, Chem. Commun., 50, 6398, 10.1039/C3CC49461F Hilal, 2018, ACS Appl. Energy Mater., 1, 2776, 10.1021/acsaem.8b00448 Panda, 2014, Chem. Commun., 50, 5358, 10.1039/C3CC47498D Rahman, 2015, Nanoscale, 7, 3526, 10.1039/C4NR06645F Lee, 2013, Chem. Eur. J., 19, 10280, 10.1002/chem.201300953 Itzhakov, 2011, Adv. Energy Mater., 1, 626, 10.1002/aenm.201100110 Lakowicz, 2006 Hardin, 2009, Nat. Photon., 3, 406, 10.1038/nphoton.2009.96 Shankar, 2009, ACS Nano, 3, 788, 10.1021/nn900090x Feng, 2008, Nano Lett., 8, 3781, 10.1021/nl802096a Hardin, 2010, Nano Lett., 10, 3077, 10.1021/nl1016688 Yum, 2011, ChemPhysChem, 12, 657, 10.1002/cphc.201000854 Warnan, 2012, Chem. Commun., 48, 675, 10.1039/C1CC16066D Choi, 2014, J. Phys. Chem. C, 118, 16319, 10.1021/jp407475b Brown, 2011, J. Phys. Chem. C, 115, 23204, 10.1021/jp207075z Greene, 2007, J. Phys. Chem. C, 111, 18451, 10.1021/jp077593l Na, 2008, Electrochim. Acta, 53, 2560, 10.1016/j.electacta.2007.10.041 Kudo, 2007, Appl. Phys. Lett., 90, 10.1063/1.2736192 Zhu, 2009, Adv. Mater., 21, 994, 10.1002/adma.200802388 Lee, 2011, J. Power Sources, 196, 596, 10.1016/j.jpowsour.2010.06.096 Humphry-Baker, 2012, Nano Lett., 12, 634, 10.1021/nl203377r Driscoll, 2010, Nano Lett., 10, 4981, 10.1021/nl103087s Semonin, 2012, Mater. Today, 15, 508, 10.1016/S1369-7021(12)70220-1 Gao, 2018, Spectrochim. Acta, Part A, 195, 176, 10.1016/j.saa.2018.01.065 Lee, 2009, Adv. Funct. Mater., 19, 2735, 10.1002/adfm.200900081 Mandal, 2018, ACS Omega, 3, 10048, 10.1021/acsomega.8b01623 Blas-Ferrando, 2015, Adv. Funct. Mater., 25, 3220, 10.1002/adfm.201500553 Blas-Ferrando, 2015, Chem. Commun., 51, 1732, 10.1039/C4CC08104H Huang, 2012, J. Phys. D: Appl. Phys., 45 Langmar, 2015, Angew. Chem., Int. Ed., 54, 7688, 10.1002/anie.201501550 Langmar, 2016, Nanoscale, 8, 17963, 10.1039/C6NR05507A Langmar, 2018, J. Mat. Chem. C, 6, 5176, 10.1039/C8TC00769A Langmar, 2018, ACS Appl. Energy Mater.