Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques
Tài liệu tham khảo
P. Burgholzer et al., Super-resolution thermographic imaging using blind structured illumination, Appl Phys Lett 111 (3).
M. Haltmeier et al., Compressed sensing and sparsity in photoacoustic thermography, J Optic 18 (11).
S. Augustin et al., Compressed sensing in a fully non-mechanical 350 ghz imaging setting, J Infrared, Millim Terahertz Waves 36 (5).
Burgholzer, 2019, Blind structured illumination as excitation for super-resolution photothermal radiometry, Quant InfraRed Thermogr J, 1
P. Burgholzer et al., Three-dimensional thermographic imaging using a virtual wave concept, J Appl Phys 121 (10).
Mayr, 2018, Parameter estimation from pulsed thermography data using the virtual wave concept, NDT E Int, 100, 101, 10.1016/j.ndteint.2018.09.003
Candes, 2005, Stable signal recovery from incomplete and inaccurate measurements, Commun Pure Appl Math, 59, 1207, 10.1002/cpa.20124
D. Donoho et al., Compressed sensing, IEEE Trans Inf Theor 52 (4).
R. G. Baraniuk, Compressive sensing, IEEE Signal Process Mag 24 (4).
E. Thiel et al., Subsurface defect localization by structured heating using laser projected photothermal thermography, JoVE (123).
M. Ziegler et al., Thermografie mit einem 1d-laser-array – von der flächigen zur strukturierten erwärmung, Thermografie-Kolloquium 60 (7–8).
Cole, 2010
T. W. Murray et al., Super-resolution photoacoustic microscopy using blind structured illumination, Optica 4 (1).
A. Beck et al., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J Imag Sci 2 (1).