Quang hợp, lipid và protein trong vi khuẩn lam Synechocystis PCC 6803 bị ảnh hưởng bởi nhiệt độ

Institute of Experimental Botany - Tập 37 - Trang 27-34 - 1995
M. M. El-Sheekh1, O. H. Hammouda2, H. Kotkat3
1Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
2Botany Department, Faculty of Science, Cairo University, Beni Suef, Egypt
3Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary

Tóm tắt

Vi khuẩn lam Synechocystis PCC 6803 được nuôi cấy quang hợp tự dưỡng trong môi trường vô cơ ở nhiệt độ phát triển không đổi là 20, 38 (đối chứng) hoặc 43°C trong 9 giờ. Việc tăng và giảm nhiệt độ nuôi cấy làm giảm sinh trưởng theo chỉ số hấp thụ dịch nuôi cấy và hàm lượng chlorophyll a. Tuy nhiên, nhiệt độ cao có tác động nhẹ đến quá trình tiến hóa oxy trong khi nhiệt độ thấp hơn mức đối chứng ức chế quá trình này trong toàn bộ thời gian ấp. Quá trình tổng hợp protein, được nghiên cứu bằng protein đánh dấu 14C, đã giảm khoảng 50% dưới nhiệt độ thấp. Mẫu axit béo đặc trưng cho việc thiếu các axit C20/C22 nhưng chứa một lượng lớn các axit béo không bão hòa đa C16 và C18, đặc biệt là 16:2 và 18:3. Nhiệt độ thấp làm tăng tỷ lệ axit béo không bão hòa đơn trong khi nhiệt độ cao làm tăng hàm lượng axit béo bão hòa trong tổng số lipid và các lớp lipid được nghiên cứu.

Từ khóa

#Cyanobacterium #Synechocystis PCC 6803 #quang hợp tự dưỡng #nhiệt độ #chlorophyll a #protein 14C #lipid #axit béo không bão hòa

Tài liệu tham khảo

Allen, M.M.: Simple conditions for the growth of unicellular blue-green algae on plates.—J. Phycol.4: 1–4, 1968. Ballinger, D.G., Pardue, M.L.: The control of protein synthesis during heat shock inDrosophila cell involves altered polypeptide elongation rate.—Cell33: 103–114, 1983. Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants.— Annu. Rev. Plant Physiol.31: 491–453, 1980. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification.—Can. J. Biochem. Physiol.37: 911–917, 1959. Chapman, D.: Phase transition and fluidity characteristics of lipids and cell membranes.—Quart. Rev. Biophys.8: 185–235, 1975. Farkas, T., Csengeri, I.: Biosynthesis of fatty acid by the carp (Cyprinus carpino L.) in relation to environmental temperature.—Lipids11: 401–407, 1976. Fork, D.C., Sen, A., William W.P.: The relationship between heat-stress and photobleaching in green and blue green algae.—Photosynth. Res.11: 71–78, 1987. Horvath, I., Mansourian, A.R., Vigh, L., Thomas, P.G., Joo, F., Quinn, P.J.: Homogeneous catalytic hydrogenation of the polar lipids of pea chloroplastin situ and the effects on lipid polymorphism.— Chem. Phys. Lipids39: 251–264, 1986. Knipprath, W.G., Mead, J.F.: Influence of temperature on the fatty acid pattern of Mosquito fish (Gambuzia affinis) and Guppy (Lebistes reticulatus).—Lipids1: 113–117, 1966. MacKinney, G.: Absorption of light by chlorophyll solutions.—J. biol. Chem.140: 315–322, 1941. Malins, H.K., Mangold, D.C.: Analysis of complex lipid mixtures by thin layer chromatography and complementary methods.—J. amer. Oil Chem. Soc.37: 576–678, 1960. McElhaney, R.N., Souza, K.A.: The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids inBacillus stearotherophilus.—Biochim. biophys. Acta443: 348–359, 1976. Michelson, A.M., Bukingham, M.: Effect of superoxide radicals on myoblast growth and differentiation.—Biochem. biophys. Res. Commun.58: 1079–1086, 1974. Murata, N., Nishida, I.: Lipids of blue-green algae (Cyanobacteria).—In: Stumpf, P.K. (ed.): Biochemistry of Plants. Vol. 9. Pp. 315–347. Academic Press, Orlando 1987. Okuyama, H.: Phospholipid metabolism inEscherichia coli after a shift in temperature..—Biochim. biophys. Acta176: 125–134, 1969. Ono, T.A., Murata, N.: Chilling susceptibility of the blue-green algaAnacystis nidulans.—1. Effect of growth temperature.—Plant Physiol.67: 176–181, 1981. Rouser, G., Fleisher, S., Yamamoto, A.: Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.—Lipids5: 494–496, 1970. Sato, N., Murata, N., Miura, Y., Ueta, N.: Effect of growth temperature on lipid and fatty acid compositions in the blue green algaAnabeana variabilis andAnacystis nidulans.—Biochim. biophys. Acta572: 19–28, 1979. Schlame, M., Horvath, L., Vigh, L.: Relationship between lipid saturation and lipid-protein interaction mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species.—Biochem. J.265: 79–85, 1990. Schmidt, J.A., Wynne, R.B.: Relative elution temperature: A simple method for measuring peak retention in programmed gas chromatography.—J. Gas Chromatogr.4: 325–328, 1967. Sinesky, M.: Homeoviscous adaptation a homeostatic process that regulates the viscosity of membrane lipids inEscherichia coli.—Proc. nat. Acad. Sci. USA71: 522–525, 1974. Stanier, R.Y., Cohen-Bazine, G.: Phototrophic procaryotes, the cyanobacteria.—Annu. Rev. Microbiol.31: 225–274, 1977. Süss, K.H., Yordanov, I.: Biosynthetic cause ofin vivo acquired thermotolerance of photosynthetic light reactions and metabolic responses of chloroplast to heat stress.—Plant Physiol.81: 192–199, 1986. Thomas, P.G., Domini, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J., Williams, W.P.: Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids.—Biochim. biophys. Acta849: 131–140, 1986. Thompson, G.A., Jr., Nozawo, Y.:Tetrahymena: A system for studying dynamic membrane alterations with the eukaryotic cell.—Biochim. biophys. Acta472: 55–92, 1977. Vigh, L., Gombos, Z., Horvath, I., Joo, F.: Saturation of membrane lipids by hydrogenation induces thermal stability in chloroplast inhibiting the heat-dependent stimulation of photosystem I mediated electron transport.—Biochim. biophys. Acta979: 361–364, 1989. Vigh, L., Lehel, C.S., Török, Zs., Gombos, Z., Balogh, N., Horvath, I.: Factors affecting thylakoid thermal stability in cyanobacteriumSynechocystis PCC 6803.—In: Quinn, P.J., Harwood, J.L. (ed.): Plant Lipid Biochemistry: Structure and Utilization. Pp. 373–381. Portland Press, London, 1990. Wada, H., Murata, N.:Synechocystis PCC 6803 mutants defective in desaturation of fatty acids.— Plant Cell Physiol.30: 971–978, 1989.