Photosensitized formation of peroxyl radicals in aqueous solutions of adenine at 77 K

Pleiades Publishing Ltd - Tập 88 - Trang 163-169 - 2013
T. A. Lozinova1, A. V. Lander2
1Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
2International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Conditions for the formation of peroxyl radicals photosensitized by near-UV irradiation in frozen aqueous solutions of adenine containing 0.1 M NaCl (pH 4–7) are studied. Analysis of the EPR spectra shows that the systems under study contain two types of peroxyl radicals presumably classified earlier as O 2 −· and HO 2· · . The effect of freezing methods on the production of the radicals is shown. The signal from O 2 −· predominates in the spectra of samples with open surfaces and is likely due to the reduction of adsorbed O2 molecules with photoejected electrons. The signal from HO 2 · could be due to photoinduced interaction between the sensitizer and solvent. Possible mechanisms of these processes are considered.

Tài liệu tham khảo

R. Santus, A. Hélène, C. Hélène, and M. Ptak, J. Phys. Chem. 74, 550 (1970). O. N. Brzhevskaya, E. N. Degtyarev, P. P. Levin, et al., Dokl. Ross. Akad. Nauk 405(2), 259 (2005). T. A. Lozinova, O. N. Brzhevskaya, E. N. Degtyarev, and S. V. Rykov, Biofizika 53, 205 (2008). T. A. Lozinova and A. V. Lander, Biophysics 56, 590 (2011). T. A. Lozinova and A. V. Lander, Biophysics 58, 341 (2013). C. E. Crespo-Hernandez and R. Arce, Photochem. Photobiol. 76, 259 (2002). J. W. Longworth, R. O. Rahn, and R. G. Shulman, J. Chem. Phys. 45, 2930 (1966). D. H. Murgida and R. Erra-Balsells, J. Luminesc. 85, 129 (1999). T. Montenay-Garestier and C. Hélène, J. Agric. Food Chem. 21, 11 (1973). M. C. R. Symons, G. W. Eastland, and L. R. Denny, J. Chem. Soc., Faraday Trans. 76, 1868 (1980). J. Bednarek, A. Plonka, A. Hallbrucker, et al., J. Am. Chem. Soc. 118, 9387 (1996). S. J. Wyard, R. C. Smith, and F. J. Adrian, J. Chem. Phys. 49, 2780 (1968). S. Steenken, Chem. Rev. 89, 503 (1989). J. Moan and O. Kaalhus, J. Chem. Phys. 61, 3556 (1974). S. Gregoli, M. Olast, and A. Bertinchamps, Radiat. Res. 60, 388 (1974). T. A. Lozinova and A. V. Lander, Biofizika 54, 992 (2009). H. Görner, J. Photochem. Photobiol. B 5, 359 (1990). P. D. Wood and R. W. Redmond, J. Am. Chem. Soc. 118, 4256 (1996). G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988). Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994). S.-C. Park, E.-S. Moon, and H. Kang, Phys. Chem. Chem. Phys. 12, 12000 (2010). A. K. Pikaev, Modern Radiation Chemistry: Radiolysis of Gases and Liquids (Nauka, Moscow, 1986) [in Russian]. J. Staluszka, A. Plonka, E. Szajdzinska-Pietek, et al., Radiat. Phys. Chem. 67, 247 (2003). I. A. Taub and K. Eiben, J. Chem. Phys. 49, 2499 (1968). J. A. Ghormley and C. J. Hochanadel, J. Phys. Chem. 75, 40 (1971). M. D. Sevilla and D. Becker, R. Soc. Chem. Spec. Rev. 14, 130 (1994). J. Aaron and J. D. Winefordner, Photochem. Photobiol. 18, 97 (1973). P. Wardman, J. Phys. Chem. Ref. Data 18, 1637 (1989). NDRL/NIST Solution Kinetics Database. http://kinetics.nist.gov/solution/ B. Loose, L. A. Miller, S. Elliott, and T. Papakyriakou, Oceanography 24, 202 (2011).