Thuật Toán Ước Lượng Tần Suất Hô Hấp Dựa Trên Phosphoghen Méo Nhiệt Cho Các Ứng Dụng Giám Sát Sức Khỏe
Tóm tắt
Từ khóa
Tài liệu tham khảo
Russo, M. A., Santarelli, D. M., & O’Rourke, D. (2017). The physiological effects of slow breathing in the healthy human. Breathe, 13(4), 298–309.
Yousefi, R., & Nourani, M. (2014). Separating arterial and venous-related components of photoplethysmographic signals for accurate extraction of oxygen saturation and respiratory rate. IEEE Journal of Biomedical and Health Informatics, 19(3), 848–857.
Al-Ghussain, L., El Bouri, S., Liu, H., Zheng, D., et al. (2020). Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different measurements locations. Journal of clinical monitoring and computing, 2020, 1–10.
Nayan, N. A., Jaafar, R., & Risman, N. S. (2018). Development of respiratory rate estimation technique using electrocardiogram and photoplethysmogram for continuous health monitoring. Bulletin of Electrical Engineering and Informatics, 7(3), 487–494.
Prasetiyo, R. B., Choi, K.-S., & Yang, G.-H. (2018). Design and implementation of respiration rate measurement system using an information filter on an embedded device. Sensors, 18(12), 4208.
Pan, C. X., Palathra, B. C., & Leo-To, W. F. (2020). Management of respiratory symptoms in those with serious illness. Medical Clinics, 104(3), 455–470.
Collins, J. C., & Moles, R. J. (2019). Management of respiratory disorders and the pharmacist’s role: Cough, colds, and sore throats and allergies (including eyes). In J. T. DiPiro (Ed.), Encyclopedia of pharmacy practice and clinical pharmacy (p. 282). Amsterdam: Elsevier.
Brendish, N. J., Malachira, A. K., Armstrong, L., Houghton, R., Aitken, S., Nyimbili, E., & Clark, T. W. (2017). Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): A pragmatic, open-label, randomised controlled trial. The Lancet Respiratory Medicine, 5(5), 401–411.
Bedoya, A. D., Clement, M. E., Phelan, M., Steorts, R. C., O’Brien, C., & Goldstein, B. A. (2019). Minimal impact of implemented early warning score and best practice alert for patient deterioration. Critical Care Medicine, 47(1), 49.
Madhav, K. V., Ram, M. R., Krishna, E. H., Komalla, N. R., & Reddy, K. A. (2013). Robust extraction of respiratory activity from PPG signals using modified MSPCA. IEEE Transactions on Instrumentation and Measurement, 62(5), 1094–1106.
Sheffield, E. R. S. (2017). The global impact of respiratory disease. Forum of International Respiratory Societies, Second Edi.
WHO. (2010). Technical Seminar- Actue Respiratory Infections.
Chon, K. H., Dash, S., & Ju, K. (2009). Estimation of respiratory rate from photoplethysmogram data using time–frequency spectral estimation. IEEE Transactions on Biomedical Engineering, 56(8), 2054–2063.
Kim, H., Kim, J.-Y., & Im, C.-H. (2016). Fast and robust real-time estimation of respiratory rate from photoplethysmography. Sensors, 16(9), 1494.
Liu, G., Wu, D., Mei, Z., Zhu, Q., & Wang, L. (2013). Automatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signals. Journal of Central South University, 20(9), 2423–2431.
Qananwah, Q., Dagamseh, A., Alquran, H., Ibrahim, K. S., Alodat, M., & Hayden, O. (2020). A comparative study of photoplethysmogram and piezoelectric plethysmogram signals. Physical and Engineering Sciences in Medicine, 43(4), 1207–1217.
Ngui, W. K., Leong, M. S., Hee, L. M., & Abdelrhman, A. M. (2013). Wavelet analysis: Mother wavelet selection methods. Applied Mechanics and Materials, 393, 953–958.
Sweeney, K. T., Mitchell, E., Gaughran, J., Kane, T., Costello, R., Coyle, S., Diamond, D. (2013). Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals. In 2013 IEEE International Conference on Body Sensor Networks (pp. 1–6).
Dehkordi, P., Garde, A., Molavi, B., Ansermino, J. M., & Dumont, G. A. (2018). Extracting instantaneous respiratory rate from multiple photoplethysmogram respiratory-induced variations. Frontiers in Physiology, 9, 948.
Karlen, W., Raman, S., Ansermino, J. M., & Dumont, G. A. (2013). Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Transactions on Biomedical Engineering, 60(7), 1946–1953.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research part F: Traffic Psychology and Behaviour, 66, 368–378.
Park, C., Shin, H., & Lee, B. (2017). Blockwise PPG enhancement based on time-variant zero-phase harmonic notch filtering. Sensors, 17(4), 860.
Nakajima, K., Tamura, T., & Miike, H. (1996). Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Medical Engineering & Physics, 18(5), 365–372.
Luguern, D., Macwan, R., Benezeth, Y., Moser, V., Dunbar, L. A., Braun, F., Lemkaddem, A., & Dubois, J. (2021). Wavelet variance maximization: A contactless respiration rate estimation method based on remote photoplethysmography. Biomedical Signal Processing and Control, 63, 102–263.
Katiyar, R., Gupta, V., & Pachori, R. B. (2019). FBSE-EWT-based approach for the determination of respiratory rate from PPG signals. IEEE Sensors Letters, 3(7), 1–4.
Zhang, Q., Xie, Q., Wang, M., & Wang, G. (2018). Motion artifact removal for PPG signals based on accurate fundamental frequency estimation and notch filtering. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2965–2968).
Motin, M. A., Karmakar, C. K., & Palaniswami, M. (2019). Selection of empirical mode decomposition techniques for extracting breathing rate from PPG. IEEE Signal Processing Letters, 26(4), 592–596.
Lei, R., Ling, B.W.-K., Feng, P., & Chen, J. (2020). Estimation of heart rate and respiratory rate from PPG signal using complementary ensemble empirical mode decomposition with both independent component analysis and non-negative matrix factorization. Sensors, 20(11), 3238.
Xiao, S., Yang, P., Liu, L., Zhang, Z., & Wu, J. (2020). Extraction of respiratory signals and respiratory rates from the photoplethysmogram. In EAI International Conference on Body Area Networks (pp. 184–198).
Yang, H., Li, M., He, D., Che, X., & Qin, X. (2019). respiratory rate estimation from the photoplethysmogram combining multiple respiratory-induced variations based on SQI. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 382–387).
Roy, B., Roy, A., Chandra, J. K., & Gupta, R. (2020). i-PRExT: Photoplethysmography derived respiration signal extraction and respiratory rate tracking using neural networks. IEEE Transactions on Instrumentation and Measurement, 70, 1–9.
Deny, J., Muthukumaran, E., Ramkumar, S., & Kartheesawaran, S. (2018). Extraction of respiratory signals and motion artifacts from PPG signal using modified multi scale principal component analysis. International Journal of Pure and Applied Mathematics, 119(12), 13719–13727.
Cicone, A., & Wu, H.-T. (2017). How nonlinear-type time-frequency analysis can help in sensing instantaneous heart rate and instantaneous respiratory rate from photoplethysmography in a reliable way. Frontiers in Physiology, 8, 701.
Ram, M. R., Madhav, K. V., Krishna, E. H., Komalla, N. R., Sivani, K., & Reddy, K. A. (2013). ICA-based improved DTCWT technique for MA reduction in PPG signals with restored respiratory information. IEEE Transactions on Instrumentation and Measurement, 62(10), 2639–2651.
Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402.
Peeters, M., Zondervan-Zwijnenburg, M., Vink, G., & de Schoot, R. (2015). How to handle missing data: A comparison of different approaches. European Journal of Developmental Psychology, 12(4), 377–394.
Dong, Y., & Peng, C.-Y.J. (2013). Principled missing data methods for researchers. Springerplus, 2(1), 1–17.
Fay, D. S., & Gerow, K. (2013). A biologist’s guide to statistical thinking and analysis. WormBook, 2013, 1–54.
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project. Journal of Open Research Software, 7(1), 1–9.
Slapničar, G., Mlakar, N., & Luštrek, M. (2019). Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors, 19(15), 3420.
Selvaraj, N., Mendelson, Y., Shelley, K. H., Silverman, D. G., & Chon, K. H. (2011). Statistical approach for the detection of motion/noise artifacts in Photoplethysmogram. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4972–4975).
Elgendi, M. (2016). Optimal signal quality index for photoplethysmogram signals. Bioengineering, 3(4), 21.
Wu, H.-T., & Soliman, E. Z. (2018). A new approach for analysis of heart rate variability and QT variability in long-term ECG recording. Biomedical Engineering Online, 17(1), 1–14.
Argüello-Prada, E. J. (2019). The mountaineer’s method for peak detection in photoplethysmographic signals. Revista Facultad de Ingenier Universidad de Antioquia, 90, 42–50.
Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73.
Rahi, P. K., & Mehra, R. (2014). Analysis of power spectrum estimation using welch method for various window techniques. International Journal of Emerging Technologies and Engineering, 2(6), 106–109.
Meredith, D. J., Clifton, D., Charlton, P., Brooks, J., Pugh, C. W., & Tarassenko, L. (2012). Photoplethysmographic derivation of respiratory rate: A review of relevant physiology. Journal of Medical Engineering & Technology, 36(1), 1–7.
Pimentel, M. A. F., Johnson, A. E. W., Charlton, P. H., Birrenkott, D., Watkinson, P. J., Tarassenko, L., & Clifton, D. A. (2016). Toward a robust estimation of respiratory rate from pulse oximeters. IEEE Transactions on Biomedical Engineering, 64(8), 1914–1923.
Nilsson, L., Johansson, A., & Kalman, S. (2000). Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. Journal of clinical monitoring and computing, 16(4), 309–315.
Fleming, S. G., & Tarassenko, L. (2007). A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram. International Journal of Biological Sciences, 2(4), 232–236.
Basic Statistics and Data Presentation. (n.d.). Basic statistics and data presentation. The United States Food and Drug Administration is a federal agency of the Department of Health and Human Services. Retrieved from https://www.fda.gov/media/73535/download