Photonic functional metal–organic frameworks

Chemical Society Reviews - Tập 47 Số 15 - Trang 5740-5785
Yuanjing Cui1,2,3,4,5, Jun Zhang1,2,3,4,5, Huajun He1,2,3,4,5, Guodong Qian1,2,3,4,5
1Cyrus Tang Center for Sensor Materials and Applications
2Hangzhou
3School of Materials Science and Engineering
4State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
5(Zhejiang University)

Tóm tắt

The recent progress in photonic MOFs for luminescence sensing, white-light emission, photocatalysis, nonlinear optics, lasing devices, and biomedicine is summarized.

Từ khóa


Tài liệu tham khảo

Lebeau, 2011, Chem. Soc. Rev., 40, 886, 10.1039/c0cs00106f

Astruc, 2010, Chem. Rev., 110, 1857, 10.1021/cr900327d

He, 2008, Chem. Rev., 108, 1245, 10.1021/cr050054x

Zhang, 2016, Acc. Chem. Res., 49, 1691, 10.1021/acs.accounts.6b00209

Parola, 2016, Adv. Funct. Mater., 26, 6506, 10.1002/adfm.201602730

Mak, 2016, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282

Bai, 2016, Adv. Funct. Mater., 26, 6330, 10.1002/adfm.201602142

Zhou, 2015, Nat. Nanotechnol., 10, 924, 10.1038/nnano.2015.251

Zhang, 2014, Acc. Chem. Res., 47, 3448, 10.1021/ar500192v

Xu, 2013, Adv. Mater., 25, 2084, 10.1002/adma.201204237

Ryan, 2012, Adv. Mater., 24, 5222, 10.1002/adma.201200669

Zhan, 2017, Small, 13, 1603879, 10.1002/smll.201603879

Li, 2016, Adv. Mater., 28, 1, 10.1002/adma.201670001

Li, 2016, Coord. Chem. Rev., 307, 106, 10.1016/j.ccr.2015.05.005

Karmakar, 2016, Coord. Chem. Rev., 307, 313, 10.1016/j.ccr.2015.08.007

Giménez-Marqués, 2016, Coord. Chem. Rev., 307, 342, 10.1016/j.ccr.2015.08.008

Cui, 2016, Acc. Chem. Res., 49, 483, 10.1021/acs.accounts.5b00530

Zhang, 2015, Coord. Chem. Rev., 284, 206, 10.1016/j.ccr.2014.10.006

Odoh, 2015, Chem. Rev., 115, 6051, 10.1021/cr500551h

Li, 2015, Prog. Polym. Sci., 48, 40, 10.1016/j.progpolymsci.2015.04.008

He, 2015, Chem. Rev., 115, 11079, 10.1021/acs.chemrev.5b00125

Zhao, 2014, Acc. Chem. Res., 47, 1199, 10.1021/ar400265x

Zhang, 2014, Chem. Soc. Rev., 43, 5444, 10.1039/C4CS00075G

Zhang, 2014, Chem. Soc. Rev., 43, 5982, 10.1039/C4CS00103F

Zhang, 2014, Chem. Soc. Rev., 43, 5789, 10.1039/C4CS00129J

Schneemann, 2014, Chem. Soc. Rev., 43, 6062, 10.1039/C4CS00101J

Qiu, 2014, Chem. Soc. Rev., 43, 6116, 10.1039/C4CS00159A

Lu, 2014, Chem. Soc. Rev., 43, 5561, 10.1039/C4CS00003J

Liu, 2014, Chem. Soc. Rev., 43, 6011, 10.1039/C4CS00094C

Li, 2014, Chem. Rev., 114, 1343, 10.1021/cr400392k

Hu, 2014, Chem. Soc. Rev., 43, 5815, 10.1039/C4CS00010B

He, 2014, Chem. Soc. Rev., 43, 5618, 10.1039/C4CS00041B

Han, 2014, Chem. Soc. Rev., 43, 5952, 10.1039/C4CS00033A

Guillerm, 2014, Chem. Soc. Rev., 43, 6141, 10.1039/C4CS00135D

Gao, 2014, Chem. Soc. Rev., 43, 5841, 10.1039/C4CS00001C

Furukawa, 2014, Chem. Soc. Rev., 43, 5700, 10.1039/C4CS00106K

Foo, 2014, Chem. Mater., 26, 310, 10.1021/cm402136z

Falcaro, 2014, Chem. Soc. Rev., 43, 5513, 10.1039/C4CS00089G

Cui, 2014, Coord. Chem. Rev., 273–274, 76, 10.1016/j.ccr.2013.10.023

Brozek, 2014, Chem. Soc. Rev., 43, 5456, 10.1039/C4CS00002A

Bradshaw, 2014, Chem. Soc. Rev., 43, 5431, 10.1039/C4CS00127C

Barea, 2014, Chem. Soc. Rev., 43, 5419, 10.1039/C3CS60475F

Cook, 2013, Chem. Rev., 113, 734, 10.1021/cr3002824

Zhang, 2012, Chem. Rev., 112, 1001, 10.1021/cr200139g

Yang, 2012, Chem. Rev., 113, 192, 10.1021/cr2004103

Wang, 2012, Chem. Rev., 112, 1084, 10.1021/cr200252n

O’Keeffe, 2012, Chem. Rev., 112, 675, 10.1021/cr200205j

Li, 2012, Chem. Rev., 112, 869, 10.1021/cr200190s

Kreno, 2012, Chem. Rev., 112, 1105, 10.1021/cr200324t

Horcajada, 2012, Chem. Rev., 112, 1232, 10.1021/cr200256v

Falcaro, 2012, Angew. Chem., Int. Ed., 51, 8431, 10.1002/anie.201203719

Cui, 2012, Chem. Rev., 112, 1126, 10.1021/cr200101d

Zhao, 2011, Acc. Chem. Res., 44, 123, 10.1021/ar100112y

Jiang, 2011, Chem. Commun., 47, 3351, 10.1039/c0cc05419d

Lustig, 2017, Coord. Chem. Rev., 10.1016/j.ccr.2017.09.017

Li, 2017, Nat. Commun., 8, 485, 10.1038/s41467-017-00526-3

Yang, 2017, Chem. Soc. Rev., 46, 4774, 10.1039/C6CS00724D

Xia, 2017, Nano Lett., 17, 2788, 10.1021/acs.nanolett.6b05004

Zhang, 2017, Adv. Mater., 29, 1701804, 10.1002/adma.201701804

Chen, 2018, Coord. Chem. Rev., 362, 1, 10.1016/j.ccr.2018.02.008

Jiao, 2017, Adv. Mater., 1703663, 10.1002/adma.201703663

Yuan, 2018, Nat. Commun., 9, 808, 10.1038/s41467-018-03102-5

Jiang, 2012, J. Am. Chem. Soc., 134, 14690, 10.1021/ja3063919

Xiang, 2012, Nat. Commun., 3, 954, 10.1038/ncomms1956

He, 2012, Energy Environ. Sci., 5, 9107, 10.1039/c2ee22858k

He, 2014, Chem. Soc. Rev., 43, 5657, 10.1039/C4CS00032C

Kong, 2013, Science, 341, 882, 10.1126/science.1238339

Herm, 2013, Science, 340, 960, 10.1126/science.1234071

Furukawa, 2013, Science, 341, 1230444, 10.1126/science.1230444

Deng, 2012, Science, 336, 1018, 10.1126/science.1220131

Ward, 2010, Nat. Chem., 2, 610, 10.1038/nchem.757

Zhao, 2013, Nat. Commun., 4, 2344, 10.1038/ncomms3344

Ma, 2010, Nat. Chem., 2, 838, 10.1038/nchem.738

Su, 2017, Nat. Commun., 8, 2008, 10.1038/s41467-017-02256-y

Lian, 2017, Nat. Commun., 8, 2075, 10.1038/s41467-017-02103-0

Zhang, 2018, Angew. Chem., Int. Ed., 57, 5095, 10.1002/anie.201802661

Maza, 2015, J. Am. Chem. Soc., 137, 8161, 10.1021/jacs.5b03071

Mahato, 2016, J. Am. Chem. Soc., 138, 6541, 10.1021/jacs.6b01652

Bai, 2015, Adv. Opt. Mater., 3, 431, 10.1002/adom.201400375

Yaghi, 2003, Nature, 423, 705, 10.1038/nature01650

Cui, 2012, J. Am. Chem. Soc., 134, 3979, 10.1021/ja2108036

Haquin, 2013, Eur. J. Inorg. Chem., 3464, 10.1002/ejic.201300381

Rocha, 2011, Chem. Soc. Rev., 40, 926, 10.1039/C0CS00130A

Pan, 2017, Angew. Chem., Int. Ed., 56, 14582, 10.1002/anie.201708802

Zurawski, 2011, Chem. Commun., 47, 496, 10.1039/C0CC02093A

Meyer, 2013, CrystEngComm, 15, 9382, 10.1039/c3ce41087k

Rybak, 2012, Inorg. Chem., 51, 13204, 10.1021/ic301482e

Fang, 2017, Adv. Funct. Mater., 27, 1603444, 10.1002/adfm.201603444

Liu, 2017, J. Am. Chem. Soc., 139, 9281, 10.1021/jacs.7b04550

Huang, 2017, Nat. Chem., 9, 689, 10.1038/nchem.2718

Islamoglu, 2017, Acc. Chem. Res., 50, 805, 10.1021/acs.accounts.6b00577

Lin, 2006, Angew. Chem., Int. Ed., 45, 7358, 10.1002/anie.200601991

Xue, 2013, J. Am. Chem. Soc., 135, 7660, 10.1021/ja401429x

Cavka, 2008, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953

Kim, 2012, J. Am. Chem. Soc., 134, 18082, 10.1021/ja3079219

Li, 2013, J. Am. Chem. Soc., 135, 11688, 10.1021/ja403810k

Xue, 2015, J. Am. Chem. Soc., 137, 5034, 10.1021/ja5131403

Yi, 2016, RSC Adv., 6, 111934, 10.1039/C6RA23263A

Zhang, 2015, Chem. Commun., 51, 14732, 10.1039/C5CC05927E

Zhang, 2015, Appl. Surf. Sci., 355, 814, 10.1016/j.apsusc.2015.07.166

Marshall, 2017, J. Am. Chem. Soc., 139, 6253, 10.1021/jacs.7b02184

Hobday, 2018, J. Am. Chem. Soc., 140, 382, 10.1021/jacs.7b10897

Luo, 2017, J. Am. Chem. Soc., 139, 9333, 10.1021/jacs.7b04532

Yan, 2017, Acc. Chem. Res., 50, 2789, 10.1021/acs.accounts.7b00387

Buso, 2012, Small, 8, 80, 10.1002/smll.201100710

Jin, 2013, J. Am. Chem. Soc., 135, 955, 10.1021/ja3097114

He, 2016, Nat. Commun., 7, 11087, 10.1038/ncomms11087

Cui, 2015, Adv. Mater., 27, 1420, 10.1002/adma.201404700

Yang, 2017, Angew. Chem., Int. Ed., 56, 7853, 10.1002/anie.201703917

Teng, 2018, J. Am. Chem. Soc., 14, 5661, 10.1021/jacs.7b11997

Sun, 2018, Nat. Commun., 9, 1644, 10.1038/s41467-018-04032-y

Sun, 2018, J. Am. Chem. Soc., 140, 984, 10.1021/jacs.7b10642

Sun, 2018, Adv. Mater., 1705479, 10.1002/adma.201705479

Lu, 2012, Nat. Chem., 4, 310, 10.1038/nchem.1272

Dou, 2014, J. Am. Chem. Soc., 136, 5527, 10.1021/ja411224j

Jina Hao, 2016, Nanoscale, 8, 2881, 10.1039/C5NR06066D

Yu, 2013, Nat. Commun., 4, 2719, 10.1038/ncomms3719

Zhao, 2017, J. Mater. Chem. C, 5, 1607, 10.1039/C6TC05203G

Zhang, 2017, Nat. Commun., 8, 1138, 10.1038/s41467-017-01248-2

Gu, 2017, Angew. Chem., Int. Ed., 56, 6853, 10.1002/anie.201702162

Liu, 2018, Angew. Chem., Int. Ed., 57, 2110, 10.1002/anie.201711600

Zhao, 2016, CrystEngComm, 18, 3746, 10.1039/C6CE00545D

Zhang, 2018, Sens. Actuators, B, 260, 63, 10.1016/j.snb.2017.12.187

Takashima, 2011, Nat. Commun., 2, 168, 10.1038/ncomms1170

Wei, 2014, J. Am. Chem. Soc., 136, 8269, 10.1021/ja5006866

Wang, 2011, J. Am. Chem. Soc., 133, 4232, 10.1021/ja111197d

Rybak, 2013, J. Am. Chem. Soc., 135, 6896, 10.1021/ja3121718

Song, 2014, Adv. Funct. Mater., 24, 4034, 10.1002/adfm.201303986

Moore, 2009, Acc. Chem. Res., 42, 542, 10.1021/ar800211j

Müller-Buschbaum, 2015, Microporous Mesoporous Mater., 216, 171, 10.1016/j.micromeso.2015.03.036

Meyer, 2014, Chem. Commun., 50, 8093, 10.1039/c4cc00848k

Lustig, 2017, Chem. Soc. Rev., 46, 3242, 10.1039/C6CS00930A

Chen, 2010, Acc. Chem. Res., 43, 1115, 10.1021/ar100023y

Liu, 2004, J. Am. Chem. Soc., 126, 2280, 10.1021/ja036635q

Chen, 2007, Adv. Mater., 19, 1693, 10.1002/adma.200601838

Shustova, 2013, J. Am. Chem. Soc., 135, 13326, 10.1021/ja407778a

Xiao, 2013, J. Mater. Chem. A, 1, 8745, 10.1039/c3ta11517h

Hu, 2015, J. Am. Chem. Soc., 137, 16209, 10.1021/jacs.5b10308

Hu, 2014, Chem. Sci., 5, 4873, 10.1039/C4SC02157F

Mallick, 2015, Chem. Sci., 6, 1420, 10.1039/C4SC03224A

Hongliang Tan, 2012, ACS Nano, 6, 10505, 10.1021/nn304469j

Hao, 2017, Adv. Funct. Mater., 27, 1603856, 10.1002/adfm.201603856

Shi, 2015, Chem. Commun., 51, 3985, 10.1039/C4CC09081K

Sanda, 2015, Chem. Commun., 51, 6576, 10.1039/C4CC10442K

Xie, 2017, Angew. Chem., Int. Ed., 56, 7500, 10.1002/anie.201700919

Chen, 2017, Nat. Commun., 8, 15985, 10.1038/ncomms15985

Yuan, 2018, Adv. Mater., 1704303, 10.1002/adma.201704303

Wang, 2016, J. Am. Chem. Soc., 138, 6204, 10.1021/jacs.6b01663

Jiang, 2013, J. Am. Chem. Soc., 135, 13934, 10.1021/ja406844r

Zhang, 2014, J. Am. Chem. Soc., 136, 7241, 10.1021/ja502643p

Hong, 2011, Chem. Soc. Rev., 40, 5361, 10.1039/c1cs15113d

Shustova, 2011, J. Am. Chem. Soc., 133, 20126, 10.1021/ja209327q

Li, 2013, Angew. Chem., Int. Ed., 52, 710, 10.1002/anie.201207610

Manna, 2013, Angew. Chem., Int. Ed., 52, 998, 10.1002/anie.201206724

Douvali, 2015, Angew. Chem., Int. Ed., 54, 1651, 10.1002/anie.201410612

Lin, 2015, Anal. Chem., 87, 4864, 10.1021/acs.analchem.5b00391

Chen, 2016, Chem. Mater., 28, 6698, 10.1021/acs.chemmater.6b03030

Zhang, 2016, ACS Appl. Mater. Interfaces, 8, 32259, 10.1021/acsami.6b12118

Rocha, 2016, Chem. – Eur. J., 22, 14782, 10.1002/chem.201600860

Cui, 2015, Chem. Commun., 51, 7420, 10.1039/C5CC00718F

Liu, 2015, Inorg. Chem., 54, 11323, 10.1021/acs.inorgchem.5b01924

Rao, 2013, J. Am. Chem. Soc., 135, 15559, 10.1021/ja407219k

Cui, 2014, Chem. Commun., 50, 719, 10.1039/C3CC47225F

Zhao, 2015, Inorg. Chem., 54, 11193, 10.1021/acs.inorgchem.5b01623

N’Dala-Louika, 2017, J. Mater. Chem. C, 5, 10933, 10.1039/C7TC03223D

Li, 2016, Adv. Funct. Mater., 26, 8677, 10.1002/adfm.201603179

Wang, 2015, Adv. Funct. Mater., 25, 2824, 10.1002/adfm.201500518

Cadiau, 2013, ACS Nano, 7, 7213, 10.1021/nn402608w

Lian, 2015, Chem. Commun., 51, 17676, 10.1039/C5CC07532G

Zhao, 2016, Chem. Commun., 52, 8259, 10.1039/C6CC02471H

Yue, 2016, J. Solid State Chem., 241, 99, 10.1016/j.jssc.2016.06.005

Zhao, 2015, Adv. Funct. Mater., 25, 1463, 10.1002/adfm.201402061

Wu, 2016, CrystEngComm, 18, 4268, 10.1039/C5CE02444G

Zhou, 2014, Chem. Commun., 50, 15235, 10.1039/C4CC07038K

Wei, 2015, Dalton Trans., 44, 3067, 10.1039/C4DT03421J

Feng, 2018, ACS Appl. Mater. Interfaces, 10, 6014, 10.1021/acsami.7b17947

Ananias, 2017, Chem. Mater., 29, 9547, 10.1021/acs.chemmater.7b03817

Foucault-Collet, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 17199, 10.1073/pnas.1305910110

Zhou, 2015, Adv. Mater., 27, 7072, 10.1002/adma.201502760

Zhan, 2014, Anal. Chem., 86, 6648, 10.1021/ac5013442

Guo, 2010, Adv. Mater., 22, 4190, 10.1002/adma.201000844

Liu, 2010, J. Mater. Chem., 20, 3272, 10.1039/b927465k

Yang, 2015, Inorg. Chem., 54, 5707, 10.1021/acs.inorgchem.5b00271

Lan, 2011, Adv. Mater., 23, 5015, 10.1002/adma.201102880

Chen, 2012, J. Mater. Chem., 22, 9027, 10.1039/c2jm30419h

Lan, 2012, Inorg. Chem., 51, 7484, 10.1021/ic202635a

Kiley, 2009, J. Am. Chem. Soc., 131, 18069, 10.1021/ja907885m

Gao, 2017, Inorg. Chem., 56, 511, 10.1021/acs.inorgchem.6b02413

Zhou, 2015, J. Mater. Chem. C, 3, 8413, 10.1039/C5TC01311A

Du, 2015, Chem. Commun., 51, 12533, 10.1039/C5CC04468E

Kaczmarek, 2017, Adv. Funct. Mater., 27, 1700258, 10.1002/adfm.201700258

da Luz, 2015, ACS Appl. Mater. Interfaces, 7, 27115, 10.1021/acsami.5b06301

Liu, 2018, ACS Appl. Mater. Interfaces, 10, 1802, 10.1021/acsami.7b13486

Lustig, 2016, Inorg. Chem., 55, 7250, 10.1021/acs.inorgchem.6b00897

Zhao, 2016, ACS Appl. Mater. Interfaces, 8, 24123, 10.1021/acsami.6b07724

Ye, 2010, Mater. Sci. Eng., R, 71, 1, 10.1016/j.mser.2010.07.001

Volker Bachmann, 2009, Chem. Mater., 21, 2077, 10.1021/cm8030768

Rao, 2012, J. Mater. Chem., 22, 3210, 10.1039/c2jm14127b

Zhao, 2015, J. Solid State Chem., 230, 287, 10.1016/j.jssc.2015.07.017

Mingsheng Wang, 2009, J. Am. Chem. Soc., 131, 13572, 10.1021/ja903947b

Liu, 2012, Chem. Mater., 24, 1954, 10.1021/cm3008254

Sava, 2012, J. Am. Chem. Soc., 134, 3983, 10.1021/ja211230p

Fred Schubert, 2005, Science, 308, 1274, 10.1126/science.1108712

He, 2012, J. Am. Chem. Soc., 134, 1553, 10.1021/ja2073559

Cui, 2015, Adv. Funct. Mater., 25, 4796, 10.1002/adfm.201501756

Wen, 2017, Adv. Mater., 29, 1700778, 10.1002/adma.201700778

Costa, 2012, Angew. Chem., Int. Ed., 51, 8178, 10.1002/anie.201201471

Sun, 2013, Nat. Commun., 4, 2717, 10.1038/ncomms3717

Gong, 2014, J. Am. Chem. Soc., 136, 16724, 10.1021/ja509446h

Allendorf, 2011, Chem. – Eur. J., 17, 11372, 10.1002/chem.201101595

Haider, 2016, ACS Nano, 10, 8366, 10.1021/acsnano.6b03030

Gust, 2009, Acc. Chem. Res., 42, 1890, 10.1021/ar900209b

Wang, 2015, Small, 11, 3097, 10.1002/smll.201500084

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Dhakshinamoorthy, 2016, Angew. Chem., Int. Ed., 55, 5414, 10.1002/anie.201505581

Foster, 2014, Chem. Sci., 5, 2081, 10.1039/C4SC00333K

Butler, 2014, J. Am. Chem. Soc., 136, 2703, 10.1021/ja4110073

Nasalevich, 2014, CrystEngComm, 16, 4919, 10.1039/C4CE00032C

Zhao, 2016, Nature, 539, 76, 10.1038/nature19763

Qian, 2018, Small, 14, 1704169, 10.1002/smll.201704169

He, 2018, Angew. Chem., Int. Ed., 57, 4657, 10.1002/anie.201801122

Li, 2018, Angew. Chem., Int. Ed., 57, 3222, 10.1002/anie.201712925

Meyer, 2015, Energy Environ. Sci., 8, 1923, 10.1039/C5EE00161G

Kataoka, 2009, Energy Environ. Sci., 2, 397, 10.1039/b814539c

Li, 2018, Appl. Catal., B, 224, 46, 10.1016/j.apcatb.2017.10.031

Fateeva, 2012, Angew. Chem., Int. Ed., 51, 7440, 10.1002/anie.201202471

He, 2018, Angew. Chem., Int. Ed., 57, 3493, 10.1002/anie.201800817

Wang, 2012, J. Am. Chem. Soc., 134, 7211, 10.1021/ja300539p

Fang, 2018, Adv. Mater., 30, 1705112, 10.1002/adma.201705112

Pattengale, 2017, ACS Catal., 7, 8446, 10.1021/acscatal.7b02467

Nasalevich, 2015, Energy Environ. Sci., 8, 364, 10.1039/C4EE02853H

Shi, 2017, Angew. Chem., Int. Ed., 56, 14637, 10.1002/anie.201709869

An, 2017, Angew. Chem., Int. Ed., 56, 3036, 10.1002/anie.201612423

Liu, 2018, Angew. Chem., Int. Ed., 130, 5477, 10.1002/ange.201800320

Xiao, 2018, Angew. Chem., Int. Ed., 57, 1103, 10.1002/anie.201711725

Liu, 2013, J. Mater. Chem. A, 1, 11563, 10.1039/c3ta12433a

Wang, 2014, Phys. Chem. Chem. Phys., 16, 14656, 10.1039/c4cp02173h

Li, 2014, Adv. Mater., 26, 4783, 10.1002/adma.201400428

Dan-Hardi, 2009, J. Am. Chem. Soc., 131, 10857, 10.1021/ja903726m

Zhu, 2018, Coord. Chem. Rev., 359, 80, 10.1016/j.ccr.2017.12.013

Fu, 2012, Angew. Chem., Int. Ed., 51, 3364, 10.1002/anie.201108357

Sun, 2014, Chem. – Eur. J., 20, 4780, 10.1002/chem.201304067

Lee, 2015, Chem. Commun., 51, 5735, 10.1039/C5CC00686D

Xu, 2015, J. Am. Chem. Soc., 137, 13440, 10.1021/jacs.5b08773

Wang, 2014, Energy Environ. Sci., 7, 2831, 10.1039/C4EE01299B

Alvaro, 2007, Chem. – Eur. J., 13, 5106, 10.1002/chem.200601003

Das, 2011, Chem. Commun., 47, 11715, 10.1039/c1cc12802g

Gao, 2014, Chem. Commun., 50, 3786, 10.1039/C3CC49440C

Wu, 2016, Angew. Chem., Int. Ed., 55, 4938, 10.1002/anie.201508325

Afzal, 2013, ACS Appl. Mater. Interfaces, 5, 4753, 10.1021/am400002k

Laurier, 2013, J. Am. Chem. Soc., 135, 14488, 10.1021/ja405086e

Liu, 2018, Appl. Catal., B, 221, 119, 10.1016/j.apcatb.2017.09.020

Liu, 2018, Appl. Catal., B, 224, 38, 10.1016/j.apcatb.2017.10.029

Wen, 2012, Cryst. Growth Des., 12, 1603, 10.1021/cg2016512

Zhang, 2013, J. Mater. Chem. A, 1, 14329, 10.1039/c3ta13030d

Ricco, 2013, J. Mater. Chem. A, 1, 13033, 10.1039/c3ta13140h

Wang, 2018, Energy Environ. Sci., 11, 1226, 10.1039/C8EE00459E

Wang, 2011, J. Am. Chem. Soc., 133, 13445, 10.1021/ja203564w

Shi, 2015, Chem. Sci., 6, 1035, 10.1039/C4SC02362E

Xie, 2011, Inorg. Chem., 50, 5318, 10.1021/ic200295h

Wu, 2012, J. Am. Chem. Soc., 134, 14991, 10.1021/ja305367j

Shen, 2013, J. Mater. Chem. A, 1, 11473, 10.1039/c3ta12645e

Ke, 2015, Nano Res., 8, 1834, 10.1007/s12274-014-0690-x

Medishetty, 2017, Chem. Soc. Rev., 46, 4976, 10.1039/C7CS00162B

Mingabudinova, 2016, Chem. Soc. Rev., 45, 5408, 10.1039/C6CS00395H

Franken, 1961, Phys. Rev. Lett., 7, 118, 10.1103/PhysRevLett.7.118

Chung, 2014, Chem. Mater., 26, 849, 10.1021/cm401737s

Li, 2013, Cryst. Growth Des., 13, 106, 10.1021/cg301243e

Wang, 2015, Dalton Trans., 44, 18810, 10.1039/C5DT02337H

Ye, 2005, Dalton Trans., 1570, 10.1039/b503039k

Han, 2015, Chem. Commun., 51, 14481, 10.1039/C5CC05566K

Zheng, 2015, Inorg. Chem. Commun., 58, 74, 10.1016/j.inoche.2015.05.022

Evans, 1999, Angew. Chem., Int. Ed., 38, 536, 10.1002/(SICI)1521-3773(19990215)38:4<536::AID-ANIE536>3.0.CO;2-3

Lin, 2000, Chem. Commun., 2263, 10.1039/b007335k

Evans, 2001, Chem. Mater., 13, 2705, 10.1021/cm010301n

Lin, 1998, J. Am. Chem. Soc., 120, 13272, 10.1021/ja983415h

Yu, 2012, Angew. Chem., Int. Ed., 51, 10542, 10.1002/anie.201204160

Song, 2016, Dalton Trans., 45, 4218, 10.1039/C5DT03466C

Seidler, 2016, J. Phys. Chem. C, 120, 6741, 10.1021/acs.jpcc.6b00217

Van Cleuvenbergen, 2016, Chem. Mater., 28, 3203, 10.1021/acs.chemmater.6b01087

Tykwinski, 1998, J. Phys. Chem. B, 102, 4451, 10.1021/jp980829o

Schaller, 2002, J. Phys. Chem. B, 106, 5143, 10.1021/jp0144653

Zhao, 2014, Inorg. Chem. Commun., 50, 97, 10.1016/j.inoche.2014.10.019

Liu, 2016, Chem. Mater., 28, 3385, 10.1021/acs.chemmater.6b00632

di Nunzio, 2014, J. Med. Chem., 57, 411, 10.1021/jm4017202

Fan, 2012, J. Am. Chem. Soc., 134, 7297, 10.1021/ja302085q

Quah, 2015, Nat. Chem., 6, 7954

Quah, 2017, Chem. Mater., 29, 7424, 10.1021/acs.chemmater.7b02417

Walton, 2013, Chem. Commun., 49, 8012, 10.1039/c3cc44119a

Yu, 2015, J. Am. Chem. Soc., 137, 4026, 10.1021/ja512552g

Zhang, 2016, J. Am. Chem. Soc., 138, 5308, 10.1021/jacs.6b01345

Oldenburg, 2016, Adv. Mater., 28, 8477, 10.1002/adma.201601718

Park, 2018, J. Am. Chem. Soc., 140, 5493, 10.1021/jacs.8b01613

Medishetty, 2017, Adv. Mater., 29, 1605637, 10.1002/adma.201605637

Horcajada, 2010, Nat. Mater., 9, 172, 10.1038/nmat2608

Sun, 2013, Expert Opin. Drug Delivery, 10, 89, 10.1517/17425247.2013.741583

Rocca, 2011, Acc. Chem. Res., 44, 957, 10.1021/ar200028a

Wang, 2017, Coord. Chem. Rev., 349, 139, 10.1016/j.ccr.2017.08.015

Wu, 2017, Adv. Mater., 29, 1606134, 10.1002/adma.201606134

Lismont, 2017, Adv. Funct. Mater., 27, 1606314, 10.1002/adfm.201606314

Carne, 2011, Chem. Soc. Rev., 40, 291, 10.1039/C0CS00042F

Jahan, 2010, J. Am. Chem. Soc., 132, 14487, 10.1021/ja105089w

Ma, 2011, Cryst. Growth Des., 11, 185, 10.1021/cg101130m

Ostermann, 2011, Chem. Commun., 47, 442, 10.1039/C0CC02271C

Li, 2010, Adv. Mater., 22, 3322, 10.1002/adma.201000857

Cai, 2015, Small, 11, 4806, 10.1002/smll.201500802

Rieter, 2006, J. Am. Chem. Soc., 128, 9024, 10.1021/ja0627444

Taylor, 2008, J. Am. Chem. Soc., 130, 14358, 10.1021/ja803777x

Xu, 2011, Chem. Commun., 47, 3153, 10.1039/c0cc05166g

Taylor, 2008, Angew. Chem., Int. Ed., 47, 7722, 10.1002/anie.200802911

Carne-Sanchez, 2013, Nat. Chem., 5, 203, 10.1038/nchem.1569

Siegel, 2013, Ca-Cancer J. Clin., 63, 11, 10.3322/caac.21166

Liu, 2014, Inorg. Chem., 53, 1916, 10.1021/ic402194c

Taylor-Pashow, 2009, J. Am. Chem. Soc., 131, 14261, 10.1021/ja906198y

Bian, 2015, Biomater. Sci., 3, 1270, 10.1039/C5BM00186B

Tian, 2015, ACS Appl. Mater. Interfaces, 7, 17765, 10.1021/acsami.5b03998

Li, 2015, Adv. Mater., 27, 4075, 10.1002/adma.201501779

Miller, 2016, Interface Focus, 6, 20160027, 10.1098/rsfs.2016.0027

He, 2014, J. Am. Chem. Soc., 136, 12253, 10.1021/ja507333c

Xu, 2016, J. Am. Chem. Soc., 138, 2158, 10.1021/jacs.5b13458

Wei, 2013, J. Mater. Chem. B, 1, 1812, 10.1039/c3tb00501a

Yang, 2015, Anal. Chem., 87, 12206, 10.1021/acs.analchem.5b03084

Qin, 2016, Chem. Commun., 52, 132, 10.1039/C5CC06697B

Lu, 2014, Chem. Commun., 50, 9969, 10.1039/C4CC04524F

Zhu, 2015, Sens. Actuators, B, 210, 500, 10.1016/j.snb.2015.01.012

Liang, 2015, Adv. Mater., 27, 7293, 10.1002/adma.201503167

Hu, 2018, Adv. Funct. Mater., 1707519, 10.1002/adfm.201707519

Lu, 2014, J. Am. Chem. Soc., 136, 16712, 10.1021/ja508679h

Lu, 2015, J. Am. Chem. Soc., 137, 7600, 10.1021/jacs.5b04069

Lan, 2017, Angew. Chem., Int. Ed., 129, 12270, 10.1002/ange.201704828

Park, 2015, Angew. Chem., Int. Ed., 54, 440, 10.1002/ange.201408862

Park, 2016, Angew. Chem., Int. Ed., 55, 7188, 10.1002/anie.201602417

Park, 2016, J. Am. Chem. Soc., 138, 3518, 10.1021/jacs.6b00007

Ma, 2017, Angew. Chem., Int. Ed., 56, 13752, 10.1002/anie.201708005

Wang, 2016, Chem. Commun., 52, 5402, 10.1039/C6CC01048B

Zhang, 2015, Chem. Commun., 51, 10831, 10.1039/C5CC03028E

Chen, 2015, Nanoscale, 7, 17299, 10.1039/C5NR04436G

Li, 2017, J. Am. Chem. Soc., 139, 13804, 10.1021/jacs.7b07302

Liu, 2016, Biomaterials, 97, 1, 10.1016/j.biomaterials.2016.04.034

Mao, 2018, Adv. Mater., 1706831, 10.1002/adma.201706831

Wang, 2016, Adv. Mater., 28, 9320, 10.1002/adma.201602997

Fang, 2017, Dalton Trans., 46, 8933, 10.1039/C7DT00613F

Yang, 2016, ACS Nano, 10, 2774, 10.1021/acsnano.5b07882

Yang, 2017, NPG Asia Mater., 9, e344, 10.1038/am.2016.205

Zhu, 2016, ACS Appl. Mater. Interfaces, 8, 34209, 10.1021/acsami.6b11378

Tian, 2017, ACS Omega, 2, 1249, 10.1021/acsomega.6b00385

Wang, 2016, Biomaterials, 100, 27, 10.1016/j.biomaterials.2016.05.027

Guillerm, 2014, Nat. Chem., 6, 673, 10.1038/nchem.1982

Alezi, 2015, J. Am. Chem. Soc., 137, 5421, 10.1021/jacs.5b00450

Assen, 2015, Angew. Chem., Int. Ed., 54, 14353, 10.1002/anie.201506345