Photonic Ge-Sb-Te phase change metamaterials and their applications

Progress in Quantum Electronics - Tập 74 - Trang 100299 - 2020
Tun Cao1, Rongzi Wang1, Robert E. Simpson2, Guixin Li3
1Department of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
2Singapore University of Technology and Design, 487372, Singapore
3Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Tài liệu tham khảo

Hecht, 2016, Is Keck’s law coming to an end?, IEEE Spectrum, 53, 28, 10.1109/MSPEC.2016.7419797 Moore, 1998, Cramming more components onto integrated circuits, Proc. IEEE, 86, 56, 10.1109/JPROC.1998.658762 Ovshinsky, 1968, Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett., 21, 11, 10.1103/PhysRevLett.21.1450 Simpson, 2011, Interfacial phase-change memory, Nat. Nanotechnol., 6, 501, 10.1038/nnano.2011.96 Loke, 2012, Breaking the speed limits of phase-change memory, Science, 336, 1566, 10.1126/science.1221561 Simpson, 2010, Toward the ultimate limit of phase change in Ge2Sb2Te5, Nano Lett., 10, 414, 10.1021/nl902777z Burr, 2010, Phase change memory technology, Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28, 223, 10.1116/1.3301579 Shelby, 2001, Experimental verification of a negative index of refraction, Science, 292, 77, 10.1126/science.1058847 Zheludev, 2012, From metamaterials to metadevices, Nat. Mater., 11, 917, 10.1038/nmat3431 Cai, 2007, Optical cloaking with metamaterials, Nat. Photon., 1, 224, 10.1038/nphoton.2007.28 Pendry, 2006, Controlling electromagnetic fields, Science, 312, 1780, 10.1126/science.1125907 Soukoulis, 2010, Optical metamaterials—more bulky and less lossy, Science, 330, 1633, 10.1126/science.1198858 Pryce, 2010, Highly strained compliant optical metamaterials with large frequency tunability, Nano Lett., 10, 4222, 10.1021/nl102684x Singh, 2010, Highly tunable optical activity in planar achiral terahertz metamaterials, Optic Express, 18, 13425, 10.1364/OE.18.013425 Kuai, 2005, Tunable electrochromic photonic crystals, Appl. Phys. Lett., 86, 221110, 10.1063/1.1929079 Leroux, 2009, Active plasmonic devices with anisotropic optical response: a step toward active polarizer, Nano Lett., 9, 2144, 10.1021/nl900695j Stockhausen, 2010, Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching, J. Am. Chem. Soc., 132, 10224, 10.1021/ja103337d Konig, 2014, Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer, ACS Nano, 8, 6182, 10.1021/nn501601e Agrawal, 2011, An integrated electrochromic nanoplasmonic optical switch, Nano Lett., 11, 2774, 10.1021/nl201064x Dintinger, 2006, Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching, Adv. Mater., 18, 1267, 10.1002/adma.200502393 Kuno, 2016, Electroresponsive structurally colored materials: a combination of structural and electrochromic effects, Angew. Chem., 55, 2503, 10.1002/anie.201511191 Cao, 2015, Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene, Optic Express, 23, 18620, 10.1364/OE.23.018620 Cao, 2017, Theoretical study of tunable chirality from graphene integrated achiral metasurfaces, Photon. Res., 5, 441, 10.1364/PRJ.5.000441 Sensalerodriguez, 2012, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun., 3 Ju, 2011, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 6, 630, 10.1038/nnano.2011.146 Weis, 2012, Spectrally wide-band terahertz wave modulator based on optically tuned graphene, ACS Nano, 6, 9118, 10.1021/nn303392s Zhu, 2014, Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite, Appl. Phys. Lett., 104, 10.1063/1.4863929 Zhu, 2013, Graphene-enabled tunability of optical fishnet metamaterial, Appl. Phys. Lett., 102, 121911, 10.1063/1.4799281 Zhu, 2013, Graphene metamaterial for optical reflection modulation, Appl. Phys. Lett., 102, 241914, 10.1063/1.4812200 Vasic, 2013, Tunable metamaterials based on split ring resonators and doped graphene, Appl. Phys. Lett., 103, 10.1063/1.4812989 Liang, 2016, Gate-programmable electro-optical addressing array of graphene-coated nanowires with sub-10 nm resolution, ACS Photonics, 3, 1847, 10.1021/acsphotonics.6b00365 Kats, 2012, Ultra-thin perfect absorber employing a tunable phase change material, Appl. Phys. Lett., 101, 221101, 10.1063/1.4767646 Kats, 2013, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Optic Lett., 38, 368, 10.1364/OL.38.000368 Cavalleri, 2001, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.237401 Kim, 2010, Nanoscale imaging and control of resistance switching in VO2 at room temperature, Appl. Phys. Lett., 96, 213106, 10.1063/1.3435466 Lysenko, 2010, Critical behavior and size effects in light-induced transition of nanostructured VO2 films, Phys. Rev. B, 82, 10.1103/PhysRevB.82.205425 Lei, 2010, Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide, Optic Lett., 35, 3988, 10.1364/OL.35.003988 Earl, 2013, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Optic Express, 21, 27503, 10.1364/OE.21.027503 Dicken, 2009, Frequency tunable near-infrared metamaterials based on VO_2 phase transition, Optic Express, 17, 18330, 10.1364/OE.17.018330 Joushaghani, 2015, Wavelength-size hybrid Si-VO(2) waveguide electroabsorption optical switches and photodetectors, Optic Express, 23, 3657, 10.1364/OE.23.003657 Driscoll, 2008, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide, Appl. Phys. Lett., 93, 10.1063/1.2956675 Seo, 2010, Active terahertz nanoantennas based on VO2 phase transition, Nano Lett., 10, 2064, 10.1021/nl1002153 Liu, 2012, Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial, Nature, 487, 345, 10.1038/nature11231 Kocer, 2015, Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films, Sci. Rep., 5, 10.1038/srep13384 Zhao, 2007, Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Appl. Phys. Lett., 90 Wang, 2007, Tunable optical negative-index metamaterials employing anisotropic liquid crystals, Appl. Phys. Lett., 91, 143122, 10.1063/1.2795345 Minovich, 2010, Tunable fishnet metamaterials infiltrated by liquid crystals, Appl. Phys. Lett., 96, 193103, 10.1063/1.3427429 Savo, 2014, Liquid crystal metamaterial absorber spatial light modulator for THz applications, Advanced Optical Materials, 2, 275, 10.1002/adom.201300384 Shen, 2018, Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations, Optic Lett., 43, 4695, 10.1364/OL.43.004695 Shrekenhamer, 2013, Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett., 110, 177403, 10.1103/PhysRevLett.110.177403 Chen, 2015, Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells, Optic Lett., 40, 2021, 10.1364/OL.40.002021 Gholipour, 2013, An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater., 25, 3050, 10.1002/adma.201300588 Chen, 2015, Engineering the phase front of light with phase-change material based planar lenses, Sci. Rep., 5 Chen, 2013, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances, Optic Express, 21, 13691, 10.1364/OE.21.013691 Michel, 2013, Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett., 13, 3470, 10.1021/nl4006194 Michel, 2014, Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics, 1, 833, 10.1021/ph500121d Cao, 2013, Study of tunable negative index metamaterials based on phase-change materials, Journal of The Optical Society of America B-optical Physics, 30, 439, 10.1364/JOSAB.30.000439 Cao, 2013, Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial, Journal of The Optical Society of America B-optical Physics, 30, 1580, 10.1364/JOSAB.30.001580 Cao, 2013, Rapid phase transition of a phase-change metamaterial perfect absorber, Opt. Mater. Express, 3, 1101, 10.1364/OME.3.001101 Cao, 2013, Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials, Optic Express, 21, 27841, 10.1364/OE.21.027841 Yin, 2015, Active chiral plasmonics, Nano Lett., 15, 4255, 10.1021/nl5042325 Tittl, 2015, A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability, Adv. Mater., 27, 4597, 10.1002/adma.201502023 Cao, 2015, Ultrafast beam steering using gradient Au- Ge2Sb2Te5 -Au plasmonic resonators, Optic Express, 23, 18029, 10.1364/OE.23.018029 Cao, 2015, Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism, Sci. Rep., 5, 10.1038/srep14666 Cao, 2019, Dynamically reconfigurable topological edge state in phase change photonic crystals, Sci. Bull., 64, 814, 10.1016/j.scib.2019.02.017 Kafaie Shirmanesh, 2018, Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability, Nano Lett., 18, 2957, 10.1021/acs.nanolett.8b00351 Wu, 2017, Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Advanced Optical Materials, 7/2017, 5 Wu, 2019, Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces, Nat. Commun., 10, 3654, 10.1038/s41467-019-11598-8 Samson, 2010, Metamaterial electro-optic switch of nanoscale thickness, Appl. Phys. Lett., 96, 143105, 10.1063/1.3355544 Khorasaninejad, 2016, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science, 352, 1190, 10.1126/science.aaf6644 Milosevic, 2012, The simple one-step solvothermal synthesis of nanostructurated VO2(B), Ceram. Int., 38, 2313, 10.1016/j.ceramint.2011.11.001 Zhang, 2017, Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies, Physical Review Applied, 7, 10.1103/PhysRevApplied.7.034008 Rude, 2016, Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials, Advanced Optical Materials, 4, 1060, 10.1002/adom.201600079 Waldecker, 2015, Time-domain separation of optical properties from structural transitions in resonantly bonded materials, Nat. Mater., 14, 991, 10.1038/nmat4359 Redaelli, 2008, Threshold switching and phase transition numerical models for phase change memory simulations, J. Appl. Phys., 103, 111101, 10.1063/1.2931951 Lencer, 2008, A map for phase-change materials, Nat. Mater., 7, 972, 10.1038/nmat2330 Hoppe, 1979, Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR)[1,2]∗, Zeitschrift Fur Kristallographie, 150, 23, 10.1524/zkri.1979.150.1-4.23 Robertson, 2007, Electronic and atomic structure of Ge2Sb2Te5 phase change memory material, Thin Solid Films, 515, 7538, 10.1016/j.tsf.2006.11.159 Raty, 2015, Aging mechanisms in amorphous phase-change materials, Nat. Commun., 6, 10.1038/ncomms8467 Li, 2017, Chalcogenide active photonics, Active photonic platforms IX, 11, 103451B Pirovano, 2004, Electronic switching in phase-change memories, IEEE Trans. Electron. Dev., 51, 452, 10.1109/TED.2003.823243 Strand, 2006 Wong, 2010, Phase change memory, Proc. IEEE, 98, 2201, 10.1109/JPROC.2010.2070050 Raoux, 2008, Crystallization properties of ultrathin phase change films, J. Appl. Phys., 103, 114310, 10.1063/1.2938076 Kim, 2010 Yamada, 1987, High speed overwritable phase change optical disk, Material, Japanese Journal of Applied Physics, 26, 61, 10.7567/JJAPS.26S4.61 Yamada, 1991, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys., 69, 2849, 10.1063/1.348620 Ikuma, 2010, Small-sized optical gate switch using Ge 2 Sb 2 Te 5 phase-change material integrated with silicon waveguide, Electron. Lett., 46, 368, 10.1049/el.2010.3588 De Galarreta, 2019 Hosseini, 2014, An optoelectronic framework enabled by low-dimensional phase-change films, Nature, 511, 206, 10.1038/nature13487 Eggleton, 2011, Chalcogenide photonics, Nat. Photon., 5, 141, 10.1038/nphoton.2011.309 Liu, 2018, Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber, Appl. Optic., 57, 9040, 10.1364/AO.57.009040 Gholipour, 2018, Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces, NPG Asia Mater., 10, 533, 10.1038/s41427-018-0043-4 Jafari, 2019, A reconfigurable color reflector by selective phase change of GeTe in a multilayer structure, Advanced Optical Materials, 7, 1801214, 10.1002/adom.201801214 Carrillo, 2019, A nonvolatile phase-change metamaterial color display, Advanced Optical Materials, 7, 1801782, 10.1002/adom.201801782 Pernice, 2012, Photonic non-volatile memories using phase change materials, Appl. Phys. Lett., 101, 171101, 10.1063/1.4758996 Rios, 2014, On-chip photonic memory elements employing phase change materials, Adv. Mater., 26, 1372, 10.1002/adma.201304476 Rude, 2013, Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials, Appl. Phys. Lett., 103, 141119, 10.1063/1.4824714 Rios, 2015, Integrated all-photonic non-volatile multi-level memory, Nat. Photon., 9, 725, 10.1038/nphoton.2015.182 Ding, 2018, Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence, Light Sci. Appl., 7, 10.1038/lsa.2017.178 Zhang, 2005, Near-infrared double negative metamaterials, Optic Express, 13, 4922, 10.1364/OPEX.13.004922 Cao, 2015, Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies, Sci. Rep., 4, 3955, 10.1038/srep03955 Cao, 2015, Fast tuning of double Fano resonance using A phase-change metamaterial under low power intensity, Sci. Rep., 4, 10.1038/srep04463 Zhu, 2014, A circuit model for plasmonic resonators, Optic Express, 22, 9809, 10.1364/OE.22.009809 Simpson, 2018 Dayal, 2012, Design of highly absorbing metamaterials for Infrared frequencies, Optic Express, 20, 17503, 10.1364/OE.20.017503 Zhang, 2011, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optic Express, 19, 15221, 10.1364/OE.19.015221 Qu, 2018, Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks, Optic Express, 26, 4279, 10.1364/OE.26.004279 Dong, 2018, Tunable mid-infrared phase-change metasurface, Advanced Optical Materials, 6, 1701346, 10.1002/adom.201701346 De Galarreta, 2018, Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared, Adv. Funct. Mater., 28, 1704993, 10.1002/adfm.201704993 Jahani, 2016, All-dielectric metamaterials, Nat. Nanotechnol., 11, 23, 10.1038/nnano.2015.304 Zheludev, 2015, Obtaining optical properties on demand, Science, 348, 973, 10.1126/science.aac4360 Chu, 2016, Active dielectric metasurface based on phase-change medium, Laser Photon. Rev., 10, 986, 10.1002/lpor.201600106 Wang, 2016, Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photon., 10, 60, 10.1038/nphoton.2015.247 Karvounis, 2016, All-dielectric phase-change reconfigurable metasurface, Appl. Phys. Lett., 109, 10.1063/1.4959272 Li, 2016, Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material, Nat. Mater., 15, 870, 10.1038/nmat4649 Njoroge, 2002, Density changes upon crystallization of Ge2Sb2.04Te4.74 films, J. Vac. Sci. Technol., 20, 230, 10.1116/1.1430249 Stegmaier, 2014, Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths, Appl. Phys. Lett., 104, 10.1063/1.4867529 Dong, 2019, Wide bandgap phase change material tuned visible photonics, Adv. Funct. Mater., 29, 1806181, 10.1002/adfm.201806181