Photonic Ge-Sb-Te phase change metamaterials and their applications
Tài liệu tham khảo
Hecht, 2016, Is Keck’s law coming to an end?, IEEE Spectrum, 53, 28, 10.1109/MSPEC.2016.7419797
Moore, 1998, Cramming more components onto integrated circuits, Proc. IEEE, 86, 56, 10.1109/JPROC.1998.658762
Ovshinsky, 1968, Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett., 21, 11, 10.1103/PhysRevLett.21.1450
Simpson, 2011, Interfacial phase-change memory, Nat. Nanotechnol., 6, 501, 10.1038/nnano.2011.96
Loke, 2012, Breaking the speed limits of phase-change memory, Science, 336, 1566, 10.1126/science.1221561
Simpson, 2010, Toward the ultimate limit of phase change in Ge2Sb2Te5, Nano Lett., 10, 414, 10.1021/nl902777z
Burr, 2010, Phase change memory technology, Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28, 223, 10.1116/1.3301579
Shelby, 2001, Experimental verification of a negative index of refraction, Science, 292, 77, 10.1126/science.1058847
Zheludev, 2012, From metamaterials to metadevices, Nat. Mater., 11, 917, 10.1038/nmat3431
Cai, 2007, Optical cloaking with metamaterials, Nat. Photon., 1, 224, 10.1038/nphoton.2007.28
Pendry, 2006, Controlling electromagnetic fields, Science, 312, 1780, 10.1126/science.1125907
Soukoulis, 2010, Optical metamaterials—more bulky and less lossy, Science, 330, 1633, 10.1126/science.1198858
Pryce, 2010, Highly strained compliant optical metamaterials with large frequency tunability, Nano Lett., 10, 4222, 10.1021/nl102684x
Singh, 2010, Highly tunable optical activity in planar achiral terahertz metamaterials, Optic Express, 18, 13425, 10.1364/OE.18.013425
Kuai, 2005, Tunable electrochromic photonic crystals, Appl. Phys. Lett., 86, 221110, 10.1063/1.1929079
Leroux, 2009, Active plasmonic devices with anisotropic optical response: a step toward active polarizer, Nano Lett., 9, 2144, 10.1021/nl900695j
Stockhausen, 2010, Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching, J. Am. Chem. Soc., 132, 10224, 10.1021/ja103337d
Konig, 2014, Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer, ACS Nano, 8, 6182, 10.1021/nn501601e
Agrawal, 2011, An integrated electrochromic nanoplasmonic optical switch, Nano Lett., 11, 2774, 10.1021/nl201064x
Dintinger, 2006, Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching, Adv. Mater., 18, 1267, 10.1002/adma.200502393
Kuno, 2016, Electroresponsive structurally colored materials: a combination of structural and electrochromic effects, Angew. Chem., 55, 2503, 10.1002/anie.201511191
Cao, 2015, Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene, Optic Express, 23, 18620, 10.1364/OE.23.018620
Cao, 2017, Theoretical study of tunable chirality from graphene integrated achiral metasurfaces, Photon. Res., 5, 441, 10.1364/PRJ.5.000441
Sensalerodriguez, 2012, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun., 3
Ju, 2011, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 6, 630, 10.1038/nnano.2011.146
Weis, 2012, Spectrally wide-band terahertz wave modulator based on optically tuned graphene, ACS Nano, 6, 9118, 10.1021/nn303392s
Zhu, 2014, Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite, Appl. Phys. Lett., 104, 10.1063/1.4863929
Zhu, 2013, Graphene-enabled tunability of optical fishnet metamaterial, Appl. Phys. Lett., 102, 121911, 10.1063/1.4799281
Zhu, 2013, Graphene metamaterial for optical reflection modulation, Appl. Phys. Lett., 102, 241914, 10.1063/1.4812200
Vasic, 2013, Tunable metamaterials based on split ring resonators and doped graphene, Appl. Phys. Lett., 103, 10.1063/1.4812989
Liang, 2016, Gate-programmable electro-optical addressing array of graphene-coated nanowires with sub-10 nm resolution, ACS Photonics, 3, 1847, 10.1021/acsphotonics.6b00365
Kats, 2012, Ultra-thin perfect absorber employing a tunable phase change material, Appl. Phys. Lett., 101, 221101, 10.1063/1.4767646
Kats, 2013, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Optic Lett., 38, 368, 10.1364/OL.38.000368
Cavalleri, 2001, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.237401
Kim, 2010, Nanoscale imaging and control of resistance switching in VO2 at room temperature, Appl. Phys. Lett., 96, 213106, 10.1063/1.3435466
Lysenko, 2010, Critical behavior and size effects in light-induced transition of nanostructured VO2 films, Phys. Rev. B, 82, 10.1103/PhysRevB.82.205425
Lei, 2010, Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide, Optic Lett., 35, 3988, 10.1364/OL.35.003988
Earl, 2013, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Optic Express, 21, 27503, 10.1364/OE.21.027503
Dicken, 2009, Frequency tunable near-infrared metamaterials based on VO_2 phase transition, Optic Express, 17, 18330, 10.1364/OE.17.018330
Joushaghani, 2015, Wavelength-size hybrid Si-VO(2) waveguide electroabsorption optical switches and photodetectors, Optic Express, 23, 3657, 10.1364/OE.23.003657
Driscoll, 2008, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide, Appl. Phys. Lett., 93, 10.1063/1.2956675
Seo, 2010, Active terahertz nanoantennas based on VO2 phase transition, Nano Lett., 10, 2064, 10.1021/nl1002153
Liu, 2012, Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial, Nature, 487, 345, 10.1038/nature11231
Kocer, 2015, Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films, Sci. Rep., 5, 10.1038/srep13384
Zhao, 2007, Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Appl. Phys. Lett., 90
Wang, 2007, Tunable optical negative-index metamaterials employing anisotropic liquid crystals, Appl. Phys. Lett., 91, 143122, 10.1063/1.2795345
Minovich, 2010, Tunable fishnet metamaterials infiltrated by liquid crystals, Appl. Phys. Lett., 96, 193103, 10.1063/1.3427429
Savo, 2014, Liquid crystal metamaterial absorber spatial light modulator for THz applications, Advanced Optical Materials, 2, 275, 10.1002/adom.201300384
Shen, 2018, Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations, Optic Lett., 43, 4695, 10.1364/OL.43.004695
Shrekenhamer, 2013, Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett., 110, 177403, 10.1103/PhysRevLett.110.177403
Chen, 2015, Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells, Optic Lett., 40, 2021, 10.1364/OL.40.002021
Gholipour, 2013, An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater., 25, 3050, 10.1002/adma.201300588
Chen, 2015, Engineering the phase front of light with phase-change material based planar lenses, Sci. Rep., 5
Chen, 2013, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances, Optic Express, 21, 13691, 10.1364/OE.21.013691
Michel, 2013, Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett., 13, 3470, 10.1021/nl4006194
Michel, 2014, Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics, 1, 833, 10.1021/ph500121d
Cao, 2013, Study of tunable negative index metamaterials based on phase-change materials, Journal of The Optical Society of America B-optical Physics, 30, 439, 10.1364/JOSAB.30.000439
Cao, 2013, Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial, Journal of The Optical Society of America B-optical Physics, 30, 1580, 10.1364/JOSAB.30.001580
Cao, 2013, Rapid phase transition of a phase-change metamaterial perfect absorber, Opt. Mater. Express, 3, 1101, 10.1364/OME.3.001101
Cao, 2013, Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials, Optic Express, 21, 27841, 10.1364/OE.21.027841
Yin, 2015, Active chiral plasmonics, Nano Lett., 15, 4255, 10.1021/nl5042325
Tittl, 2015, A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability, Adv. Mater., 27, 4597, 10.1002/adma.201502023
Cao, 2015, Ultrafast beam steering using gradient Au- Ge2Sb2Te5 -Au plasmonic resonators, Optic Express, 23, 18029, 10.1364/OE.23.018029
Cao, 2015, Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism, Sci. Rep., 5, 10.1038/srep14666
Cao, 2019, Dynamically reconfigurable topological edge state in phase change photonic crystals, Sci. Bull., 64, 814, 10.1016/j.scib.2019.02.017
Kafaie Shirmanesh, 2018, Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability, Nano Lett., 18, 2957, 10.1021/acs.nanolett.8b00351
Wu, 2017, Microfluidic metasurfaces: broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface, Advanced Optical Materials, 7/2017, 5
Wu, 2019, Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces, Nat. Commun., 10, 3654, 10.1038/s41467-019-11598-8
Samson, 2010, Metamaterial electro-optic switch of nanoscale thickness, Appl. Phys. Lett., 96, 143105, 10.1063/1.3355544
Khorasaninejad, 2016, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science, 352, 1190, 10.1126/science.aaf6644
Milosevic, 2012, The simple one-step solvothermal synthesis of nanostructurated VO2(B), Ceram. Int., 38, 2313, 10.1016/j.ceramint.2011.11.001
Zhang, 2017, Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies, Physical Review Applied, 7, 10.1103/PhysRevApplied.7.034008
Rude, 2016, Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials, Advanced Optical Materials, 4, 1060, 10.1002/adom.201600079
Waldecker, 2015, Time-domain separation of optical properties from structural transitions in resonantly bonded materials, Nat. Mater., 14, 991, 10.1038/nmat4359
Redaelli, 2008, Threshold switching and phase transition numerical models for phase change memory simulations, J. Appl. Phys., 103, 111101, 10.1063/1.2931951
Lencer, 2008, A map for phase-change materials, Nat. Mater., 7, 972, 10.1038/nmat2330
Hoppe, 1979, Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR)[1,2]∗, Zeitschrift Fur Kristallographie, 150, 23, 10.1524/zkri.1979.150.1-4.23
Robertson, 2007, Electronic and atomic structure of Ge2Sb2Te5 phase change memory material, Thin Solid Films, 515, 7538, 10.1016/j.tsf.2006.11.159
Raty, 2015, Aging mechanisms in amorphous phase-change materials, Nat. Commun., 6, 10.1038/ncomms8467
Li, 2017, Chalcogenide active photonics, Active photonic platforms IX, 11, 103451B
Pirovano, 2004, Electronic switching in phase-change memories, IEEE Trans. Electron. Dev., 51, 452, 10.1109/TED.2003.823243
Strand, 2006
Wong, 2010, Phase change memory, Proc. IEEE, 98, 2201, 10.1109/JPROC.2010.2070050
Raoux, 2008, Crystallization properties of ultrathin phase change films, J. Appl. Phys., 103, 114310, 10.1063/1.2938076
Kim, 2010
Yamada, 1987, High speed overwritable phase change optical disk, Material, Japanese Journal of Applied Physics, 26, 61, 10.7567/JJAPS.26S4.61
Yamada, 1991, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys., 69, 2849, 10.1063/1.348620
Ikuma, 2010, Small-sized optical gate switch using Ge 2 Sb 2 Te 5 phase-change material integrated with silicon waveguide, Electron. Lett., 46, 368, 10.1049/el.2010.3588
De Galarreta, 2019
Hosseini, 2014, An optoelectronic framework enabled by low-dimensional phase-change films, Nature, 511, 206, 10.1038/nature13487
Eggleton, 2011, Chalcogenide photonics, Nat. Photon., 5, 141, 10.1038/nphoton.2011.309
Liu, 2018, Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber, Appl. Optic., 57, 9040, 10.1364/AO.57.009040
Gholipour, 2018, Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces, NPG Asia Mater., 10, 533, 10.1038/s41427-018-0043-4
Jafari, 2019, A reconfigurable color reflector by selective phase change of GeTe in a multilayer structure, Advanced Optical Materials, 7, 1801214, 10.1002/adom.201801214
Carrillo, 2019, A nonvolatile phase-change metamaterial color display, Advanced Optical Materials, 7, 1801782, 10.1002/adom.201801782
Pernice, 2012, Photonic non-volatile memories using phase change materials, Appl. Phys. Lett., 101, 171101, 10.1063/1.4758996
Rios, 2014, On-chip photonic memory elements employing phase change materials, Adv. Mater., 26, 1372, 10.1002/adma.201304476
Rude, 2013, Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials, Appl. Phys. Lett., 103, 141119, 10.1063/1.4824714
Rios, 2015, Integrated all-photonic non-volatile multi-level memory, Nat. Photon., 9, 725, 10.1038/nphoton.2015.182
Ding, 2018, Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence, Light Sci. Appl., 7, 10.1038/lsa.2017.178
Zhang, 2005, Near-infrared double negative metamaterials, Optic Express, 13, 4922, 10.1364/OPEX.13.004922
Cao, 2015, Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies, Sci. Rep., 4, 3955, 10.1038/srep03955
Cao, 2015, Fast tuning of double Fano resonance using A phase-change metamaterial under low power intensity, Sci. Rep., 4, 10.1038/srep04463
Zhu, 2014, A circuit model for plasmonic resonators, Optic Express, 22, 9809, 10.1364/OE.22.009809
Simpson, 2018
Dayal, 2012, Design of highly absorbing metamaterials for Infrared frequencies, Optic Express, 20, 17503, 10.1364/OE.20.017503
Zhang, 2011, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optic Express, 19, 15221, 10.1364/OE.19.015221
Qu, 2018, Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks, Optic Express, 26, 4279, 10.1364/OE.26.004279
Dong, 2018, Tunable mid-infrared phase-change metasurface, Advanced Optical Materials, 6, 1701346, 10.1002/adom.201701346
De Galarreta, 2018, Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared, Adv. Funct. Mater., 28, 1704993, 10.1002/adfm.201704993
Jahani, 2016, All-dielectric metamaterials, Nat. Nanotechnol., 11, 23, 10.1038/nnano.2015.304
Zheludev, 2015, Obtaining optical properties on demand, Science, 348, 973, 10.1126/science.aac4360
Chu, 2016, Active dielectric metasurface based on phase-change medium, Laser Photon. Rev., 10, 986, 10.1002/lpor.201600106
Wang, 2016, Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photon., 10, 60, 10.1038/nphoton.2015.247
Karvounis, 2016, All-dielectric phase-change reconfigurable metasurface, Appl. Phys. Lett., 109, 10.1063/1.4959272
Li, 2016, Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material, Nat. Mater., 15, 870, 10.1038/nmat4649
Njoroge, 2002, Density changes upon crystallization of Ge2Sb2.04Te4.74 films, J. Vac. Sci. Technol., 20, 230, 10.1116/1.1430249
Stegmaier, 2014, Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths, Appl. Phys. Lett., 104, 10.1063/1.4867529
Dong, 2019, Wide bandgap phase change material tuned visible photonics, Adv. Funct. Mater., 29, 1806181, 10.1002/adfm.201806181
