Photon mapping with visible kernel domains

The Visual Computer - Tập 35 - Trang 707-720 - 2018
Romuald Perrot1, Lilian Aveneau1, Frédéric Mora2, Daniel Meneveaux1
1XLIM/ASALI – UMR CNRS 7252, University of Poitiers, Poitiers, France
2XLIM/ASALI – UMR CNRS 7252, University of Limoges, Limoges, France

Tóm tắt

Despite the strong efforts made in the last three decades, lighting simulation systems still remain prone to various types of imprecisions. This paper specifically tackles the problem of biases due to density estimation used in photon mapping approaches. We study the fundamental aspects of density estimation and exhibit the need for handling visibility in the early stage of the kernel domain definition. We show that properly managing visibility in the density estimation process allows to reduce or to remove biases all at once. In practice, we have implemented a 3D product kernel based on a polyhedral domain, with both point-to-point and point-to-surface visibility computation. Our experimental results illustrate the enhancements produced at every stage of density estimation, for direct photon maps visualization and progressive photon mapping.

Tài liệu tham khảo

Bekaert, P., Slusallek, P., Cools, R., Havran, V., Seidel, H.P.: A custom designed density estimation method for light transport. Technical Report MPI-I-2003-4-004, Max-Planck-Institut für Informatik, Saarbrücken (2003) Chen, L.H., Tsai, T.C., Chen, Y.S.: Grouped photon mapping. Vis. Comput. 26, 217–226 (2010) Dammertz, H., Hanika, J., Keller, A.: Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays. Comput. Graph. Forum 27(4), 1225–1233 (2008) Dutre, P., Bala, K., Bekaert, P., Shirley, P.: Advanced Global Illumination. AK Peters Ltd, Natick (2006) Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation with vertex connection and merging. ACM TOG Proc. SIGGRAPH Asia 31(6), 192 (2012) Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon mapping. ACM TOG Proc. ACM SIGGRAPH Asia 27(5), 30 (2008) Hachisuka, T., Pantaleoni, J., Jensen, H.W.: A path space extension for robust light transport simulation. ACM TOG Proc. SIGGRAPH Asia 31(6), 191 (2012) Haumont, D., Mäkinen, O., Nirenstein, S.: A low dimensional framework for exact polygon-to-polygon occlusion queries. In: Eurographics Symposium on Rendering Techniques, pp. 211–222 (2005) Havran, V., Bittner, J., Herzog, R., Seidel, H.P.: Ray maps for global illumination. In: Eurographics Symposium on Rendering Techniques, pp. 43–54 (2005) Herzog, R.: Advanced density estimation techniques for global illumination. Master’s thesis, Universität des Saarlandes (MPI Informatik) (2005) Izenman, A.: Modern Multivariate Statistical Techniques, Regression, Classification, and Manifold Learning. Springer, New-York (2008) Jensen, H.W.: Global illumination using photon maps. In: Eurographics Workshop on Rendering Techniques, pp. 21–30 (1996) Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd, Natick (2001) Jones, M.C.: Simple boundary correction for kernel density estimation. Stat. Comput. 3(3), 135–146 (1993) Kajiya, J.T.: The rendering equation. In: ACM SIGGRAPH (1986) Knaus, C., Zwicker, M.: Progressive photon mapping: a probabilistic approach. ACM TOG 30(3), 25 (2011) Lastra, M., Ureña, C., Revelles, J., Montes, R.: A particle-path based method for Monte-Carlo density estimation. In: Eurographics Workshop on Rendering Techniques (2002) Lavignotte, F., Paulin, M.: A new approach of density estimation for global illumination. In: WSCG, Plzen , Czech Republic, pp. 263–273 (2002) Lavignotte, F., Paulin, M.: Scalable photon splatting for global illumination. In: GRAPHITE ’03. ACM, New York (2003) Mora, F., Aveneau, L., Apostu, O.L., Ghazanfarpour, D.: Lazy visibility evaluation for exact soft shadows. Comput. Graph. Forum 31(1), 132–145 (2012) Nirenstein, S., Blake, E., Gain, J.: Exact from-region visibility culling. In: Eurographics Workshop on Rendering Techniques (2002) Pharr, M., Humphreys, G.: Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2010) Qin, H., Sun, X., Hou, Q., Guo, B., Zhou, K.: Unbiased photon gathering for light transport simulation. ACM TOG Proc. SIGGRAPH 34(6), 208 (2015) Schregle, R.: Bias compensation for photon maps. Comput. Graph. Forum 22, 729–742 (2003) Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, Boca Raton (1998) Teller, S., Hanrahan, P.: Global visibility algorithms for illumination computations. In: ACM SIGGRAPH (1993) Tobler, R.F., Maierhofer, S.: Improved illumination estimation for photon maps in architectural scenes. In: WSCG pp. 257–261 (2006) Veach, E.: Robust Monte–Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997) Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: a kernel framework for efficient CPU ray tracing. ACM TOG Proc. ACM SIGGRAPH 33(4), 143 (2014) Wand, M.P., Jones, M.C.: Kernel Smoothing, Monographs on Statistics and Applied Probability, vol. 60. Chapman and Hall, London (1995)