Phát quang của các nanog wires ZnO: Một bài tổng hợp
Tóm tắt
Các cấu trúc nan một chiều ZnO (dây nano/thanh nano) là những vật liệu hấp dẫn cho các ứng dụng như cảm biến khí, cảm biến sinh học, pin mặt trời và chất xúc tác quang. Điều này là do quy trình sản xuất tương đối dễ dàng của những loại cấu trúc nano này với các đặc tính vận chuyển tải điện tuyệt vời và chất lượng tinh thể cao. Trong công trình này, chúng tôi xem xét các tính chất phát quang (PL) của các dây nano và thanh nano ZnO đơn lẻ và tập thể. Do các kỹ thuật phát triển khác nhau được áp dụng cho các mẫu được trình bày, một bài tổng hợp ngắn về hai phương pháp phát triển phổ biến, là hơi-lỏng-rắn (VLS) và thủy nhiệt, sẽ được trình bày. Tiếp theo, chúng tôi sẽ bàn về quá trình phát xạ và đặc điểm của phát xạ tuyến gần băng (NBE) và phát xạ mức độ sâu (DLE). Đóng góp tương ứng của chúng cho tổng phát xạ của cấu trúc nano sẽ được thảo luận bằng cách sử dụng thông tin phân phối không gian thu được từ các phép đo vi cầu truyền electron quét−phát quang điện (STEM-CL). Ngoài ra, ảnh hưởng của các hiệu ứng bề mặt lên phát quang của dây nano ZnO, cũng như sự phụ thuộc vào nhiệt độ, sẽ được thảo luận ngắn gọn cho cả phát xạ tia cực tím và nhìn thấy được. Cuối cùng, chúng tôi sẽ trình bày một cuộc thảo luận về hiệu ứng giảm kích thước của hai băng phát quang chính của ZnO. Đối với phát xạ rộng (gần tia cực tím và nhìn thấy được), đôi khi đã được quy cho các nguyên nhân khác nhau, chúng tôi tóm tắt các khiếm khuyết điểm bẩm sinh khác nhau hoặc các trung tâm bẫy trong ZnO như một nguyên nhân gây ra các băng phát xạ ở mức độ sâu khác nhau.
Từ khóa
Tài liệu tham khảo
Espitia, P.J.P., Otoni, C.G., and Soares, N.F.F. (2016). Zinc Oxide Nanoparticles for Food Packaging Applications, Elsevier Inc.
Wang, D., and Reynolds, N. (2012). Photoluminescence of Zinc Oxide nanowires: The effect of surface band bending. ISRN Condens. Matter Phys., 2012.
Butcher, P.N., March, N.H., and Tosi, M.P. (1986). Crystalline Semiconducting Materials and Devices, Springer. [1st ed.].
Petkov, P., Tsiulyanu, D., Popov, C., and Kulisch, W. (2015). Nanoscience Advances in CBRN Agent Detection, Information and Energy Security: An Introduction, Springer.
Marotti, 2004, Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential, Sol. Energy Mater. Sol. Cells, 82, 85, 10.1016/j.solmat.2004.01.008
Ozgur, 2010, ZnO devices and applications: A review of current status and future prospects, Proc. IEEE, 98, 1255, 10.1109/JPROC.2010.2044550
Lv, 2018, Defect evolution in ZnO and its effect on radiation tolerance, Phys. Chem. Chem. Phys., 20, 11882, 10.1039/C8CP01855C
Kaidashev, 2003, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys. Lett., 82, 3901, 10.1063/1.1578694
Chen, 2018, Surface-induced enhancement of piezoelectricity in ZnO nanowires, Chin. Phys. Lett., 35, 127701, 10.1088/0256-307X/35/12/127701
Wang, 2017, Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing, ACS Nano, 11, 8339, 10.1021/acsnano.7b03560
Lee, 2003, Growth of zinc oxide nanowires by thermal evaporation on vicinal Si(100) substrate, J. Cryst. Growth, 249, 201, 10.1016/S0022-0248(02)02091-2
Roso, 2016, Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers, Mater. Res. Express, 3, 065013, 10.1088/2053-1591/3/6/065013
Ma, 2017, ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn2GeO4: Mn polycrystalline substrates, Mater. Res. Express, 4, 065012, 10.1088/2053-1591/aa701a
Ameer, 2019, The fabrication of zinc oxide nanorods and nanowires by solgel immersion methods, J. Phys. Conf. Ser., 1170, 012005, 10.1088/1742-6596/1170/1/012005
Alshehri, 2018, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, J. Saudi Chem. Soc., 22, 538, 10.1016/j.jscs.2017.09.004
Isakov, 2013, Growth of ZnO and ZnMgO nanowires by Au-catalysed molecular-beam epitaxy, Phys. Status Solidi Curr. Top. Solid State Phys., 10, 1308
Park, 2002, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 80, 4232, 10.1063/1.1482800
Rai, 2013, Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties, ACS Appl. Mater. Interfaces, 5, 3026, 10.1021/am302811h
Guo, 2000, Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Appl. Phys. Lett., 76, 2901, 10.1063/1.126511
Bagga, S., Akhtar, J., and Mishra, S. (2018). Synthesis and applications of ZnO nanowire: A review. AIP Conference Proceedings, AIP Publishing LLC.
Vayssieres, 2003, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater., 15, 464, 10.1002/adma.200390108
Wu, 2002, Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes, Appl. Phys. Lett., 81, 1312, 10.1063/1.1499512
Crupi, 2012, Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, 520, 4432, 10.1016/j.tsf.2012.02.080
Gao, 2009, Electronic transport in superlattice-structured ZnO nanohelix, Nano Lett., 9, 137, 10.1021/nl802682c
Hughes, 2005, Controlled synthesis and manipulation of ZnO nanorings and nanobows, Appl. Phys. Lett., 86, 2003, 10.1063/1.1853514
Haibo, 2008, Controllable Pt/ZnO porous nanocages with improved photocatalytic activity, J. Phys. Chem. C, 112, 19620, 10.1021/jp807309s
Wang, 2008, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep. Purif. Technol., 62, 727, 10.1016/j.seppur.2008.03.035
Pearton, 2006, ZnO spintronics and nanowire devices, J. Electron. Mater., 35, 862, 10.1007/BF02692541
Sun, 2012, Metal oxide nanostructures and their gas sensing properties: A review, Sensors, 12, 2610, 10.3390/s120302610
Lee, 2016, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res., 88, 428, 10.1016/j.watres.2015.09.045
Meyer, 2004, Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidid Basic Res., 241, 231, 10.1002/pssb.200301962
Zhang, Y., Ram, M.K., Stefanakos, E.K., and Goswami, D.Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater., 2012.
Rong, 2019, Fabrications and applications of ZnO nanomaterials in flexible functional devices—A review, Crit. Rev. Anal. Chem., 49, 336, 10.1080/10408347.2018.1531691
Rauwel, P., Salumaa, M., Aasna, A., Galeckas, A., and Rauwel, E. (2016). A review of the synthesis and photoluminescence properties of hybrid ZnO and carbon nanomaterials. J. Nanomater., 2016.
Parihar, 2018, A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles, Rev. Adv. Mater. Sci., 53, 119, 10.1515/rams-2018-0009
Li, 2000, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett., 76, 2011, 10.1063/1.126238
Wahab, 2012, Zinc oxide nanostructures and their applications, Intell. Nanomater. Process. Prop. Appl., 28, 183
Witkowski, 2018, Applications of ZnO nanorods and nanowires—A review, Acta Phys. Polon. A, 134, 1226, 10.12693/APhysPolA.134.1226
Samadi, 2016, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films, 605, 2, 10.1016/j.tsf.2015.12.064
Kumar, 2015, Zinc oxide nanostructures for NO 2 gas–sensor applications: A review, Nano-Micro Lett., 7, 97, 10.1007/s40820-014-0023-3
Shanmugam, 2017, A review on ZnO-based electrical biosensors for cardiac biomarker detection, Future Sci. OA, 3, FSO196, 10.4155/fsoa-2017-0006
Rackauskas, S., Barbero, N., Barolo, C., and Viscardi, G. (2017). ZnO nanowire application in chemoresistive sensing: A review. Nanomaterials, 7.
Sirelkhatim, 2015, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett., 7, 219, 10.1007/s40820-015-0040-x
Rahman, 2019, Zinc oxide light-emitting diodes: A review, Opt. Eng., 58, 010901, 10.1117/1.OE.58.1.010901
Gargas, 2009, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy, J. Am. Chem. Soc., 131, 2125, 10.1021/ja8092339
Consonni, 2019, ZnO nanowires for solar cells: A comprehensive review, Nanotechnology, 30, 362001, 10.1088/1361-6528/ab1f2e
Ditshego, 2019, ZnO nanowire field effect transistor for biosensing: A review, J. Nano Res., 60, 94, 10.4028/www.scientific.net/JNanoR.60.94
Wang, 2009, Ten years’ venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications, Chin. Sci. Bull., 54, 4021, 10.1007/s11434-009-0456-0
Chennupati Jagadish, S.J.P. (2006). Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier Science.
Morkoç, H., and Özgür, Ü. (2009). Zinc Oxide: Fundamentals, Materials and Device Technology, John Wiley & Sons.
Rodnyi, 2011, Optical and luminescence properties of zinc oxide (Review), Opt. Spectrosc. Engl. Transl. Opt. Spektrosk., 111, 776, 10.1134/S0030400X11120216
Rackauskas, 2009, A novel method for metal oxide nanowire synthesis, Nanotechnology, 20, 165603, 10.1088/0957-4484/20/16/165603
Singh, 2013, Different morphologies of zinc oxide nanostructures grown under similar deposition conditions during vapor-liquid-solid growth, Nanosci. Nanotechnol. Lett., 5, 1224, 10.1166/nnl.2013.1726
Huang, 2001, Room-temperature ultraviolet nanowire nanolasers, Science, 292, 1897, 10.1126/science.1060367
Simon, 2013, Metal-seeded growth mechanism of ZnO nanowires, Cryst. Growth Des., 13, 572, 10.1021/cg301640v
Wang, 2004, Zinc oxide nanostructures: Growth, properties and applications, J. Phys. Condenced Matter, 16, R829, 10.1088/0953-8984/16/25/R01
Liu, 2015, In-situ observation of hydrothermal growth of ZnO nanowires on patterned Zn substrate and their photocatalytic performance, Appl. Surf. Sci., 356, 240, 10.1016/j.apsusc.2015.08.075
Serrano, 2017, Effect of the seed layer on the growth and orientation of the ZnO nanowires: Consequence on structural and optical properties, Vacuum, 146, 509, 10.1016/j.vacuum.2017.03.010
Xu, 2011, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res., 4, 1013, 10.1007/s12274-011-0160-7
Alivov, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 11
Biroju, 2015, Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse, Nanotechnology, 26, 145601, 10.1088/0957-4484/26/14/145601
Lupan, 2010, Synthesis and characterization of ZnO nanowires for nanosensor applications, Mater. Res. Bull., 45, 1026, 10.1016/j.materresbull.2010.03.027
Qiu, 2009, The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method, Nanotechnology, 20, 155603, 10.1088/0957-4484/20/15/155603
Gargas, 2011, High quantum efficiency of band-edge emission from ZnO nanowires, Nano Lett., 11, 3792, 10.1021/nl201850k
2019, Tailoring the Green, Yellow and Red defect emission bands in ZnO nanowires via the growth parameters, J. Lumin., 210, 128, 10.1016/j.jlumin.2019.02.017
Fan, 2012, Visible photoluminescence components of solution-grown ZnO nanowires: Influence of the surface depletion layer, J. Phys. Chem. C, 116, 19496, 10.1021/jp302443n
Fabbri, 2014, Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures, Sci. Rep., 4, 5158, 10.1038/srep05158
Tai, 2014, ZnO nanowire arrays: Controllable preparation and effect of annealing temperature on optical properties, Mater. Res. Innov., 18, 20, 10.1179/1433075X13Y.0000000131
Borysiewicz, 2017, Room temperature sputter deposited catalyst-free nanowires with wurtzite/zinc blende ZnO superstructure and their application in electromechanical nanogenerators on polymer and paper substrates, Nanotechnology, 28, 085204, 10.1088/1361-6528/aa56da
Galdamez, 2019, DNA probe functionalization on different morphologies of ZnO/Au nanowire for bio-sensing applications, Mater. Lett., 235, 250, 10.1016/j.matlet.2018.10.026
Choi, 2010, ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode, Sens. Actuators B Chem., 148, 577, 10.1016/j.snb.2010.04.049
Belhaj, 2017, Surface morphology evolution with fabrication parameters of ZnO nanowires toward emission properties enhancement, Phys. B Condens. Matter, 526, 64, 10.1016/j.physb.2017.08.034
Kennedy, 2019, Mapping the origins of luminescence in ZnO nanowires by STEM-CL, J. Phys. Chem. Lett., 10, 386, 10.1021/acs.jpclett.8b03286
Lai, 2011, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance, Appl. Catal. B Environ., 105, 335, 10.1016/j.apcatb.2011.04.028
Mousavi, 2012, Comparison of structural and photoluminescence properties of zinc oxide nanowires grown by vapor-solid and vapor-liquid-solid methods, Thin Solid Films, 520, 4642, 10.1016/j.tsf.2011.10.071
Lyu, 2002, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett., 363, 134, 10.1016/S0009-2614(02)01145-4
Ding, 2013, Verification of Γ7 symmetry assignment for the top valence band of ZnO by magneto-optical studies of the free A exciton state, New J. Phys., 15, 033015, 10.1088/1367-2630/15/3/033015
Zuo, 2010, Optical and electronic properties of native zinc oxide films on polycrystalline Zn, Phys. Chem. Chem. Phys., 12, 11467, 10.1039/c004532b
Gadallah, A.S., and El-Nahass, M.M. (2013). Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Adv. Condens. Matter Phys., 2013.
Gencyilmaz, 2012, Structural and optical properties of transparent polycrystalline ZnO films, AIP Conf. Proc., 1476, 216, 10.1063/1.4751598
Lin, 2009, Hydrothermal growth of ZnO single crystals with high carrier mobility, Cryst. Growth Des., 9, 4378, 10.1021/cg900339u
Khranovskyy, 2012, Luminescence anisotropy of ZnO microrods, J. Lumin., 132, 2643, 10.1016/j.jlumin.2012.04.048
Muth, 1997, Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements, Appl. Phys. Lett., 71, 2572, 10.1063/1.120191
Chen, 2007, The properties of ZnO photoluminescence at and above room temperature, J. Appl. Phys., 102, 2005, 10.1063/1.2822156
Hullavarad, 2009, Persistent photoconductivity studies in nanostructured ZnO UV sensors, Nanoscale Res. Lett., 4, 1421, 10.1007/s11671-009-9414-7
Reynolds, 1965, Zeeman effects in the edge emission and absorption of ZnO, Phys. Rev., 140, A1726, 10.1103/PhysRev.140.A1726
Mohanta, 2008, Influence of buffer layer on structural and optical properties of ZnO nanorods on glass substrates, Electrochem. Solid-State Lett., 11, 143, 10.1149/1.2898500
Khranovskyy, 2012, Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques, Phys. B Condens. Matter, 407, 1538, 10.1016/j.physb.2011.09.080
Khranovskyy, 2014, Photoluminescence study of basal plane stacking faults in ZnO nanowires, Phys. B Condens. Matter, 439, 50, 10.1016/j.physb.2013.12.020
Reparaz, 2010, Size-dependent recombination dynamics in ZnO nanowires, Appl. Phys. Lett., 96, 053105, 10.1063/1.3294327
Teke, 2004, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 70, 195207, 10.1103/PhysRevB.70.195207
Thonke, 2001, Donor-acceptor pair transitions in ZnO substrate material, Phys. B Condens. Matter, 308–310, 985
Rodina, 2004, Magneto-optical properties of bound excitons in ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 69, 125206, 10.1103/PhysRevB.69.125206
Wagner, M.R. (2010). Fundamental Properties of Excitons and Phonons in ZnO: A Spectroscopic Study of the Dynamics, Polarity, and Effects of External Fields. [Ph.D. Thesis, Technische Universität].
Cao, 2007, Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties, J. Phys. Chem. C, 111, 2470, 10.1021/jp066661l
Tong, 2006, Growth and optical properties of faceted hexagonal ZnO nanotubes, J. Phys. Chem. B, 110, 14714, 10.1021/jp056654h
Varshni, 1967, Temperature dependence of the energy gap in semiconductors, Physica, 34, 149, 10.1016/0031-8914(67)90062-6
Sakai, 2009, Low-temperature photoluminescence of nanostructured ZnO crystal synthesized by pulsed-laser ablation, Jpn. J. Appl. Phys., 48, 0850011, 10.1143/JJAP.48.085001
Guo, 2016, Temperature dependence of the photoluminescence from ZnO microrods prepared by a float zone method, CrystEngComm, 18, 3130, 10.1039/C6CE00349D
Fang, 2010, Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires, J. Phys. Chem. C, 114, 12477, 10.1021/jp1037975
Hamby, 2003, Temperature dependent exciton photoluminescence of bulk ZnO, J. Appl. Phys., 93, 3214, 10.1063/1.1545157
Rauch, 2010, Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals, J. Appl. Phys., 107, 024311, 10.1063/1.3275889
Janotti, 2009, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72, 126501, 10.1088/0034-4885/72/12/126501
Kong, 2001, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 78, 407, 10.1063/1.1342050
Grabowska, 2005, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential, Phys. Rev. B Condens. Matter Mater. Phys., 71, 115439, 10.1103/PhysRevB.71.115439
Shalish, 2004, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B Condens. Matter Mater. Phys., 69, 245401, 10.1103/PhysRevB.69.245401
Zhang, 2003, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl. Phys. Lett., 83, 1635, 10.1063/1.1605803
Huang, 2001, Catalytic growth of Zinc oxide nanowires by vapor transport, Adv. Mater., 24, 113, 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
Liao, 2008, Surface effects on photoluminescence of single ZnO nanowires, Phys. Lett. Sect. A Gen. At. Solid State Phys., 372, 4505
Willander, 2010, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices, Materials, 3, 2643, 10.3390/ma3042643
Zhang, 2009, Fabrication and green emission of ZnO nanowire arrays, Sci. China Ser. E Technol. Sci., 52, 883, 10.1007/s11431-008-0193-7
Kang, 2004, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, J. Appl. Phys., 95, 1246, 10.1063/1.1633343
Studenikin, 1998, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys., 84, 2287, 10.1063/1.368295
Vanheusden, 1996, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 79, 7983, 10.1063/1.362349
Xiong, 2006, Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective, Phys. Status Solidi Curr. Top. Solid State Phys., 3, 3577
Xu, 2010, Ordered nanowire array blue/near-UV light emitting diodes, Adv. Mater., 22, 4749, 10.1002/adma.201002134
Zhu, 2008, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process, J. Chem. Phys., 129, 124713, 10.1063/1.2981050
Lauer, 1973, The I.R. photoluminescence emission band in ZnO, J. Phys. Chem. Solids, 34, 249, 10.1016/0022-3697(73)90084-X
Leiter, 2001, The oxygen vacancy as the origin of a green emission in undoped ZnO, Phys. Status Solidi Basic Res., 226, 5
Quemener, 2012, Evolution of deep electronic states in ZnO during heat treatment in oxygen- and zinc-rich ambients, Appl. Phys. Lett., 100, 1, 10.1063/1.3693612
Sokol, 2007, Point defects in ZnO, Semicond. Semimet., 134, 267
Tam, 2006, Defects in ZnO nanorods prepared by a hydrothermal method, J. Phys. Chem. B, 110, 20865, 10.1021/jp063239w
Jeong, 2003, Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient, Appl. Phys. Lett., 82, 2625, 10.1063/1.1568543
Shan, 2007, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys., 101, 053106, 10.1063/1.2437122
Leung, 2006, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength, Appl. Phys. Lett., 88, 28
Alvi, 2011, The origin of the red emission in n-zno nanotubes/p-gan white light emitting diodes, Nanoscale Res. Lett., 6, 130, 10.1186/1556-276X-6-130
Yamauchi, 2004, Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy, J. Cryst. Growth, 260, 1, 10.1016/j.jcrysgro.2003.08.002
Cao, 2006, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays, Appl. Phys. Lett., 88, 161101, 10.1063/1.2195694
Lin, 2001, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79, 943, 10.1063/1.1394173
Ahn, 2009, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys., 105, 013502, 10.1063/1.3054175
Anantachaisilp, 2014, Tailoring deep level surface defects in ZnO nanorods for high sensitivity ammonia gas sensing, J. Phys. Chem. C., 118, 27150, 10.1021/jp5085857
Liu, 2016, Oxygen vacancies: The origin of n-type conductivity in ZnO, Phys. Rev. B, 93, 235305, 10.1103/PhysRevB.93.235305
Janotti, 2007, Native point defects in ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 76, 165202, 10.1103/PhysRevB.76.165202
Neugebauer, 2004, First-principles calculations for defects and impurities: Applications to III-nitrides, J. Appl. Phys., 95, 3851, 10.1063/1.1682673
Yang, 2013, Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets, J. Appl. Phys., 113, 033514, 10.1063/1.4776225
Wu, 2001, Photouminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett., 78, 2285, 10.1063/1.1361288
Zhao, 2005, Deep-level emissions influenced by O and Zn implantations in ZnO, Appl. Phys. Lett., 87, 211912, 10.1063/1.2135880
Chen, 2013, Surface passivation effect on the photoluminescence of ZnO nanorods, ACS Appl. Mater. Interfaces, 5, 6354, 10.1021/am401418b
Agarwal, 2019, Gas sensing properties of ZnO nanostructures (flowers/rods)synthesized by hydrothermal method, Sens. Actuators B Chem., 292, 24, 10.1016/j.snb.2019.04.083
Lima, 2001, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater., 3, 749, 10.1016/S1466-6049(01)00055-1
Wang, 2009, Study on the defects of ZnO nanowire, Solid State Commun., 149, 1947, 10.1016/j.ssc.2009.07.038
Nikitenko, V. (2005). Optics and spectroscopy of point defects in ZnO. Zinc Oxide—A Material for Micro-and Optoelectronic Applications, Springer.
2000, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett., 85, 1012, 10.1103/PhysRevLett.85.1012
Schirmer, 1970, The yellow luminescence of zinc oxide, Solid State Commun., 8, 1559, 10.1016/0038-1098(70)90608-3
Kayaci, 2014, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density, Nanoscale, 6, 10224, 10.1039/C4NR01887G
Vanheusden, 1996, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett., 68, 403, 10.1063/1.116699
Bhaskar, 2009, Mechanism of green luminescence in ZnO, Indian J. Pure Appl. Phys., 47, 772
Agarwal, 2019, Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering, Sci. Rep., 9, 1, 10.1038/s41598-019-43184-9
Dahan, 1998, Properties of the intermediately bound α-, β- and γ-excitons in ZnO:Cu, J. Phys. Condens. Matter, 10, 2007, 10.1088/0953-8984/10/9/007
Look, 1999, Residual native shallow donor in ZnO, Phys. Rev. Lett., 82, 2552, 10.1103/PhysRevLett.82.2552
Vink, 1954, The origin of the fluorescence in self-activated ZnS, CdS, and ZnO, J. Chem. Phys., 22, 250, 10.1063/1.1740044
Chen, 2011, Origins of green band emission in high-temperature annealed N-doped ZnO, J. Lumin., 131, 1189, 10.1016/j.jlumin.2011.02.025
Hsu, 2004, Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods, J. Appl. Phys., 96, 4671, 10.1063/1.1787905
Choy, 2004, Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures, Adv. Funct. Mater., 14, 856, 10.1002/adfm.200305082
Dietz, 1963, Electronic structure of copper impurities in ZnO, Phys. Rev., 132, 1559, 10.1103/PhysRev.132.1559
Dingle, 1969, Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide, Phys. Rev. Lett., 23, 579, 10.1103/PhysRevLett.23.579
Reshchikov, 2008, Yellow luminescence in ZnO layers grown on sapphire, J. Appl. Phys., 103, 103514, 10.1063/1.2924437
Lv, 2019, Defect luminescence and its mediated physical properties in ZnO, J. Lumin., 208, 225, 10.1016/j.jlumin.2018.12.050
Zwingel, 1972, Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals, J. Lumin., 5, 385, 10.1016/0022-2313(72)90001-4
Cox, 1978, Exchange broadened, optically detected ESR spectra for luminescent donor-acceptor pairs in Li doped ZnO, Solid State Commun., 25, 77, 10.1016/0038-1098(78)90361-7
Alvi, 2010, The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes, Superlattices Microstruct., 47, 754, 10.1016/j.spmi.2010.03.002
Li, 2004, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl. Phys. Lett., 85, 1601, 10.1063/1.1786375
Reshchikov, 2009, Photoluminescence from ZnO nanowires, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 27, 1688
Greene, 2003, Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem. Int. Ed., 42, 3031, 10.1002/anie.200351461
Gomi, 2003, Photoluminescent and structural properties of precipitated ZnO fine particles, Jpn. J. Appl. Phys., 42, 481, 10.1143/JJAP.42.481