Phát quang của các nanog wires ZnO: Một bài tổng hợp

Nanomaterials - Tập 10 Số 5 - Trang 857
Andrés Galdámez‐Martínez1, G. Santana1, Frank Güell2, Paulina R. Martínez‐Alanis2, Ateet Dutt1
1Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City 04510, Mexico
2ENFOCAT-IN2UB, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Catalunya, Spain

Tóm tắt

Các cấu trúc nan một chiều ZnO (dây nano/thanh nano) là những vật liệu hấp dẫn cho các ứng dụng như cảm biến khí, cảm biến sinh học, pin mặt trời và chất xúc tác quang. Điều này là do quy trình sản xuất tương đối dễ dàng của những loại cấu trúc nano này với các đặc tính vận chuyển tải điện tuyệt vời và chất lượng tinh thể cao. Trong công trình này, chúng tôi xem xét các tính chất phát quang (PL) của các dây nano và thanh nano ZnO đơn lẻ và tập thể. Do các kỹ thuật phát triển khác nhau được áp dụng cho các mẫu được trình bày, một bài tổng hợp ngắn về hai phương pháp phát triển phổ biến, là hơi-lỏng-rắn (VLS) và thủy nhiệt, sẽ được trình bày. Tiếp theo, chúng tôi sẽ bàn về quá trình phát xạ và đặc điểm của phát xạ tuyến gần băng (NBE) và phát xạ mức độ sâu (DLE). Đóng góp tương ứng của chúng cho tổng phát xạ của cấu trúc nano sẽ được thảo luận bằng cách sử dụng thông tin phân phối không gian thu được từ các phép đo vi cầu truyền electron quét−phát quang điện (STEM-CL). Ngoài ra, ảnh hưởng của các hiệu ứng bề mặt lên phát quang của dây nano ZnO, cũng như sự phụ thuộc vào nhiệt độ, sẽ được thảo luận ngắn gọn cho cả phát xạ tia cực tím và nhìn thấy được. Cuối cùng, chúng tôi sẽ trình bày một cuộc thảo luận về hiệu ứng giảm kích thước của hai băng phát quang chính của ZnO. Đối với phát xạ rộng (gần tia cực tím và nhìn thấy được), đôi khi đã được quy cho các nguyên nhân khác nhau, chúng tôi tóm tắt các khiếm khuyết điểm bẩm sinh khác nhau hoặc các trung tâm bẫy trong ZnO như một nguyên nhân gây ra các băng phát xạ ở mức độ sâu khác nhau.

Từ khóa


Tài liệu tham khảo

Espitia, P.J.P., Otoni, C.G., and Soares, N.F.F. (2016). Zinc Oxide Nanoparticles for Food Packaging Applications, Elsevier Inc.

Wang, D., and Reynolds, N. (2012). Photoluminescence of Zinc Oxide nanowires: The effect of surface band bending. ISRN Condens. Matter Phys., 2012.

Butcher, P.N., March, N.H., and Tosi, M.P. (1986). Crystalline Semiconducting Materials and Devices, Springer. [1st ed.].

Petkov, P., Tsiulyanu, D., Popov, C., and Kulisch, W. (2015). Nanoscience Advances in CBRN Agent Detection, Information and Energy Security: An Introduction, Springer.

Marotti, 2004, Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential, Sol. Energy Mater. Sol. Cells, 82, 85, 10.1016/j.solmat.2004.01.008

Ozgur, 2010, ZnO devices and applications: A review of current status and future prospects, Proc. IEEE, 98, 1255, 10.1109/JPROC.2010.2044550

Lv, 2018, Defect evolution in ZnO and its effect on radiation tolerance, Phys. Chem. Chem. Phys., 20, 11882, 10.1039/C8CP01855C

Kaidashev, 2003, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys. Lett., 82, 3901, 10.1063/1.1578694

Chen, 2018, Surface-induced enhancement of piezoelectricity in ZnO nanowires, Chin. Phys. Lett., 35, 127701, 10.1088/0256-307X/35/12/127701

Wang, 2017, Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing, ACS Nano, 11, 8339, 10.1021/acsnano.7b03560

Lee, 2003, Growth of zinc oxide nanowires by thermal evaporation on vicinal Si(100) substrate, J. Cryst. Growth, 249, 201, 10.1016/S0022-0248(02)02091-2

Roso, 2016, Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers, Mater. Res. Express, 3, 065013, 10.1088/2053-1591/3/6/065013

Ma, 2017, ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn2GeO4: Mn polycrystalline substrates, Mater. Res. Express, 4, 065012, 10.1088/2053-1591/aa701a

Ameer, 2019, The fabrication of zinc oxide nanorods and nanowires by solgel immersion methods, J. Phys. Conf. Ser., 1170, 012005, 10.1088/1742-6596/1170/1/012005

Alshehri, 2018, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, J. Saudi Chem. Soc., 22, 538, 10.1016/j.jscs.2017.09.004

Isakov, 2013, Growth of ZnO and ZnMgO nanowires by Au-catalysed molecular-beam epitaxy, Phys. Status Solidi Curr. Top. Solid State Phys., 10, 1308

Park, 2002, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 80, 4232, 10.1063/1.1482800

Rai, 2013, Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties, ACS Appl. Mater. Interfaces, 5, 3026, 10.1021/am302811h

Guo, 2000, Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Appl. Phys. Lett., 76, 2901, 10.1063/1.126511

Bagga, S., Akhtar, J., and Mishra, S. (2018). Synthesis and applications of ZnO nanowire: A review. AIP Conference Proceedings, AIP Publishing LLC.

Vayssieres, 2003, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater., 15, 464, 10.1002/adma.200390108

Wu, 2002, Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes, Appl. Phys. Lett., 81, 1312, 10.1063/1.1499512

Li, 2002, ZnO nanobelts grown on Si substrate, Appl. Phys. Lett., 81, 144, 10.1063/1.1492008

Crupi, 2012, Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, 520, 4432, 10.1016/j.tsf.2012.02.080

Gao, 2009, Electronic transport in superlattice-structured ZnO nanohelix, Nano Lett., 9, 137, 10.1021/nl802682c

Hughes, 2005, Controlled synthesis and manipulation of ZnO nanorings and nanobows, Appl. Phys. Lett., 86, 2003, 10.1063/1.1853514

Haibo, 2008, Controllable Pt/ZnO porous nanocages with improved photocatalytic activity, J. Phys. Chem. C, 112, 19620, 10.1021/jp807309s

Wang, 2008, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep. Purif. Technol., 62, 727, 10.1016/j.seppur.2008.03.035

Gao, 2009, Nanostructures of zinc oxide, Int. J. Nanotechnol., 6, 245, 10.1504/IJNT.2009.022917

Pearton, 2006, ZnO spintronics and nanowire devices, J. Electron. Mater., 35, 862, 10.1007/BF02692541

Sun, 2012, Metal oxide nanostructures and their gas sensing properties: A review, Sensors, 12, 2610, 10.3390/s120302610

Lee, 2016, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res., 88, 428, 10.1016/j.watres.2015.09.045

Meyer, 2004, Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidid Basic Res., 241, 231, 10.1002/pssb.200301962

Zhang, Y., Ram, M.K., Stefanakos, E.K., and Goswami, D.Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater., 2012.

Rong, 2019, Fabrications and applications of ZnO nanomaterials in flexible functional devices—A review, Crit. Rev. Anal. Chem., 49, 336, 10.1080/10408347.2018.1531691

Rauwel, P., Salumaa, M., Aasna, A., Galeckas, A., and Rauwel, E. (2016). A review of the synthesis and photoluminescence properties of hybrid ZnO and carbon nanomaterials. J. Nanomater., 2016.

Parihar, 2018, A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles, Rev. Adv. Mater. Sci., 53, 119, 10.1515/rams-2018-0009

Li, 2000, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett., 76, 2011, 10.1063/1.126238

Wahab, 2012, Zinc oxide nanostructures and their applications, Intell. Nanomater. Process. Prop. Appl., 28, 183

Witkowski, 2018, Applications of ZnO nanorods and nanowires—A review, Acta Phys. Polon. A, 134, 1226, 10.12693/APhysPolA.134.1226

Samadi, 2016, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films, 605, 2, 10.1016/j.tsf.2015.12.064

Kumar, 2015, Zinc oxide nanostructures for NO 2 gas–sensor applications: A review, Nano-Micro Lett., 7, 97, 10.1007/s40820-014-0023-3

Shanmugam, 2017, A review on ZnO-based electrical biosensors for cardiac biomarker detection, Future Sci. OA, 3, FSO196, 10.4155/fsoa-2017-0006

Rackauskas, S., Barbero, N., Barolo, C., and Viscardi, G. (2017). ZnO nanowire application in chemoresistive sensing: A review. Nanomaterials, 7.

Sirelkhatim, 2015, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett., 7, 219, 10.1007/s40820-015-0040-x

Rahman, 2019, Zinc oxide light-emitting diodes: A review, Opt. Eng., 58, 010901, 10.1117/1.OE.58.1.010901

Gargas, 2009, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy, J. Am. Chem. Soc., 131, 2125, 10.1021/ja8092339

Consonni, 2019, ZnO nanowires for solar cells: A comprehensive review, Nanotechnology, 30, 362001, 10.1088/1361-6528/ab1f2e

Ditshego, 2019, ZnO nanowire field effect transistor for biosensing: A review, J. Nano Res., 60, 94, 10.4028/www.scientific.net/JNanoR.60.94

Wang, 2009, Ten years’ venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications, Chin. Sci. Bull., 54, 4021, 10.1007/s11434-009-0456-0

Chennupati Jagadish, S.J.P. (2006). Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier Science.

Morkoç, H., and Özgür, Ü. (2009). Zinc Oxide: Fundamentals, Materials and Device Technology, John Wiley & Sons.

Rodnyi, 2011, Optical and luminescence properties of zinc oxide (Review), Opt. Spectrosc. Engl. Transl. Opt. Spektrosk., 111, 776, 10.1134/S0030400X11120216

Rackauskas, 2009, A novel method for metal oxide nanowire synthesis, Nanotechnology, 20, 165603, 10.1088/0957-4484/20/16/165603

Goyal, R.K. (2016). Nanomaterials and Nanocomposites, CRC Press.

Singh, 2013, Different morphologies of zinc oxide nanostructures grown under similar deposition conditions during vapor-liquid-solid growth, Nanosci. Nanotechnol. Lett., 5, 1224, 10.1166/nnl.2013.1726

Huang, 2001, Room-temperature ultraviolet nanowire nanolasers, Science, 292, 1897, 10.1126/science.1060367

Simon, 2013, Metal-seeded growth mechanism of ZnO nanowires, Cryst. Growth Des., 13, 572, 10.1021/cg301640v

Wang, 2004, Zinc oxide nanostructures: Growth, properties and applications, J. Phys. Condenced Matter, 16, R829, 10.1088/0953-8984/16/25/R01

Liu, 2015, In-situ observation of hydrothermal growth of ZnO nanowires on patterned Zn substrate and their photocatalytic performance, Appl. Surf. Sci., 356, 240, 10.1016/j.apsusc.2015.08.075

Serrano, 2017, Effect of the seed layer on the growth and orientation of the ZnO nanowires: Consequence on structural and optical properties, Vacuum, 146, 509, 10.1016/j.vacuum.2017.03.010

Xu, 2011, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res., 4, 1013, 10.1007/s12274-011-0160-7

Alivov, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 11

Biroju, 2015, Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse, Nanotechnology, 26, 145601, 10.1088/0957-4484/26/14/145601

Lupan, 2010, Synthesis and characterization of ZnO nanowires for nanosensor applications, Mater. Res. Bull., 45, 1026, 10.1016/j.materresbull.2010.03.027

Qiu, 2009, The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method, Nanotechnology, 20, 155603, 10.1088/0957-4484/20/15/155603

Gargas, 2011, High quantum efficiency of band-edge emission from ZnO nanowires, Nano Lett., 11, 3792, 10.1021/nl201850k

2019, Tailoring the Green, Yellow and Red defect emission bands in ZnO nanowires via the growth parameters, J. Lumin., 210, 128, 10.1016/j.jlumin.2019.02.017

Fan, 2012, Visible photoluminescence components of solution-grown ZnO nanowires: Influence of the surface depletion layer, J. Phys. Chem. C, 116, 19496, 10.1021/jp302443n

Fabbri, 2014, Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures, Sci. Rep., 4, 5158, 10.1038/srep05158

Tai, 2014, ZnO nanowire arrays: Controllable preparation and effect of annealing temperature on optical properties, Mater. Res. Innov., 18, 20, 10.1179/1433075X13Y.0000000131

Borysiewicz, 2017, Room temperature sputter deposited catalyst-free nanowires with wurtzite/zinc blende ZnO superstructure and their application in electromechanical nanogenerators on polymer and paper substrates, Nanotechnology, 28, 085204, 10.1088/1361-6528/aa56da

Galdamez, 2019, DNA probe functionalization on different morphologies of ZnO/Au nanowire for bio-sensing applications, Mater. Lett., 235, 250, 10.1016/j.matlet.2018.10.026

Choi, 2010, ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode, Sens. Actuators B Chem., 148, 577, 10.1016/j.snb.2010.04.049

Belhaj, 2017, Surface morphology evolution with fabrication parameters of ZnO nanowires toward emission properties enhancement, Phys. B Condens. Matter, 526, 64, 10.1016/j.physb.2017.08.034

Kennedy, 2019, Mapping the origins of luminescence in ZnO nanowires by STEM-CL, J. Phys. Chem. Lett., 10, 386, 10.1021/acs.jpclett.8b03286

Lai, 2011, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance, Appl. Catal. B Environ., 105, 335, 10.1016/j.apcatb.2011.04.028

Mousavi, 2012, Comparison of structural and photoluminescence properties of zinc oxide nanowires grown by vapor-solid and vapor-liquid-solid methods, Thin Solid Films, 520, 4642, 10.1016/j.tsf.2011.10.071

Lyu, 2002, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett., 363, 134, 10.1016/S0009-2614(02)01145-4

Ding, 2013, Verification of Γ7 symmetry assignment for the top valence band of ZnO by magneto-optical studies of the free A exciton state, New J. Phys., 15, 033015, 10.1088/1367-2630/15/3/033015

Adachi, 1997, Optical #constants of ZnO, J. Appl. Phys., 36, 6237, 10.1143/JJAP.36.6237

Zuo, 2010, Optical and electronic properties of native zinc oxide films on polycrystalline Zn, Phys. Chem. Chem. Phys., 12, 11467, 10.1039/c004532b

Gadallah, A.S., and El-Nahass, M.M. (2013). Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Adv. Condens. Matter Phys., 2013.

Gencyilmaz, 2012, Structural and optical properties of transparent polycrystalline ZnO films, AIP Conf. Proc., 1476, 216, 10.1063/1.4751598

Lin, 2009, Hydrothermal growth of ZnO single crystals with high carrier mobility, Cryst. Growth Des., 9, 4378, 10.1021/cg900339u

Khranovskyy, 2012, Luminescence anisotropy of ZnO microrods, J. Lumin., 132, 2643, 10.1016/j.jlumin.2012.04.048

Muth, 1997, Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements, Appl. Phys. Lett., 71, 2572, 10.1063/1.120191

Chen, 2007, The properties of ZnO photoluminescence at and above room temperature, J. Appl. Phys., 102, 2005, 10.1063/1.2822156

Hullavarad, 2009, Persistent photoconductivity studies in nanostructured ZnO UV sensors, Nanoscale Res. Lett., 4, 1421, 10.1007/s11671-009-9414-7

Reynolds, 1965, Zeeman effects in the edge emission and absorption of ZnO, Phys. Rev., 140, A1726, 10.1103/PhysRev.140.A1726

Mohanta, 2008, Influence of buffer layer on structural and optical properties of ZnO nanorods on glass substrates, Electrochem. Solid-State Lett., 11, 143, 10.1149/1.2898500

Khranovskyy, 2012, Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques, Phys. B Condens. Matter, 407, 1538, 10.1016/j.physb.2011.09.080

Khranovskyy, 2014, Photoluminescence study of basal plane stacking faults in ZnO nanowires, Phys. B Condens. Matter, 439, 50, 10.1016/j.physb.2013.12.020

Reparaz, 2010, Size-dependent recombination dynamics in ZnO nanowires, Appl. Phys. Lett., 96, 053105, 10.1063/1.3294327

Teke, 2004, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 70, 195207, 10.1103/PhysRevB.70.195207

Thonke, 2001, Donor-acceptor pair transitions in ZnO substrate material, Phys. B Condens. Matter, 308–310, 985

Rodina, 2004, Magneto-optical properties of bound excitons in ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 69, 125206, 10.1103/PhysRevB.69.125206

Wagner, M.R. (2010). Fundamental Properties of Excitons and Phonons in ZnO: A Spectroscopic Study of the Dynamics, Polarity, and Effects of External Fields. [Ph.D. Thesis, Technische Universität].

Cao, 2007, Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties, J. Phys. Chem. C, 111, 2470, 10.1021/jp066661l

Tong, 2006, Growth and optical properties of faceted hexagonal ZnO nanotubes, J. Phys. Chem. B, 110, 14714, 10.1021/jp056654h

Varshni, 1967, Temperature dependence of the energy gap in semiconductors, Physica, 34, 149, 10.1016/0031-8914(67)90062-6

Sakai, 2009, Low-temperature photoluminescence of nanostructured ZnO crystal synthesized by pulsed-laser ablation, Jpn. J. Appl. Phys., 48, 0850011, 10.1143/JJAP.48.085001

Guo, 2016, Temperature dependence of the photoluminescence from ZnO microrods prepared by a float zone method, CrystEngComm, 18, 3130, 10.1039/C6CE00349D

Fang, 2010, Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires, J. Phys. Chem. C, 114, 12477, 10.1021/jp1037975

Hamby, 2003, Temperature dependent exciton photoluminescence of bulk ZnO, J. Appl. Phys., 93, 3214, 10.1063/1.1545157

Rauch, 2010, Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals, J. Appl. Phys., 107, 024311, 10.1063/1.3275889

Janotti, 2009, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72, 126501, 10.1088/0034-4885/72/12/126501

Kong, 2001, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 78, 407, 10.1063/1.1342050

Grabowska, 2005, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential, Phys. Rev. B Condens. Matter Mater. Phys., 71, 115439, 10.1103/PhysRevB.71.115439

Shalish, 2004, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B Condens. Matter Mater. Phys., 69, 245401, 10.1103/PhysRevB.69.245401

Zhang, 2003, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl. Phys. Lett., 83, 1635, 10.1063/1.1605803

Huang, 2001, Catalytic growth of Zinc oxide nanowires by vapor transport, Adv. Mater., 24, 113, 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

Liao, 2008, Surface effects on photoluminescence of single ZnO nanowires, Phys. Lett. Sect. A Gen. At. Solid State Phys., 372, 4505

Willander, 2010, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices, Materials, 3, 2643, 10.3390/ma3042643

Zhang, 2009, Fabrication and green emission of ZnO nanowire arrays, Sci. China Ser. E Technol. Sci., 52, 883, 10.1007/s11431-008-0193-7

Kang, 2004, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, J. Appl. Phys., 95, 1246, 10.1063/1.1633343

Studenikin, 1998, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys., 84, 2287, 10.1063/1.368295

Vanheusden, 1996, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 79, 7983, 10.1063/1.362349

Xiong, 2006, Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective, Phys. Status Solidi Curr. Top. Solid State Phys., 3, 3577

Xu, 2010, Ordered nanowire array blue/near-UV light emitting diodes, Adv. Mater., 22, 4749, 10.1002/adma.201002134

Zhu, 2008, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process, J. Chem. Phys., 129, 124713, 10.1063/1.2981050

Lauer, 1973, The I.R. photoluminescence emission band in ZnO, J. Phys. Chem. Solids, 34, 249, 10.1016/0022-3697(73)90084-X

Leiter, 2001, The oxygen vacancy as the origin of a green emission in undoped ZnO, Phys. Status Solidi Basic Res., 226, 5

Quemener, 2012, Evolution of deep electronic states in ZnO during heat treatment in oxygen- and zinc-rich ambients, Appl. Phys. Lett., 100, 1, 10.1063/1.3693612

Sokol, 2007, Point defects in ZnO, Semicond. Semimet., 134, 267

Tam, 2006, Defects in ZnO nanorods prepared by a hydrothermal method, J. Phys. Chem. B, 110, 20865, 10.1021/jp063239w

Jeong, 2003, Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient, Appl. Phys. Lett., 82, 2625, 10.1063/1.1568543

Shan, 2007, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys., 101, 053106, 10.1063/1.2437122

Leung, 2006, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength, Appl. Phys. Lett., 88, 28

Alvi, 2011, The origin of the red emission in n-zno nanotubes/p-gan white light emitting diodes, Nanoscale Res. Lett., 6, 130, 10.1186/1556-276X-6-130

Yamauchi, 2004, Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy, J. Cryst. Growth, 260, 1, 10.1016/j.jcrysgro.2003.08.002

Cao, 2006, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays, Appl. Phys. Lett., 88, 161101, 10.1063/1.2195694

Lin, 2001, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79, 943, 10.1063/1.1394173

Ahn, 2009, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys., 105, 013502, 10.1063/1.3054175

Anantachaisilp, 2014, Tailoring deep level surface defects in ZnO nanorods for high sensitivity ammonia gas sensing, J. Phys. Chem. C., 118, 27150, 10.1021/jp5085857

Leung, 2006, Optical properties of ZnO nanostructu130res, Small, 2, 944, 10.1002/smll.200600134

Liu, 2016, Oxygen vacancies: The origin of n-type conductivity in ZnO, Phys. Rev. B, 93, 235305, 10.1103/PhysRevB.93.235305

Janotti, 2007, Native point defects in ZnO, Phys. Rev. B Condens. Matter Mater. Phys., 76, 165202, 10.1103/PhysRevB.76.165202

Neugebauer, 2004, First-principles calculations for defects and impurities: Applications to III-nitrides, J. Appl. Phys., 95, 3851, 10.1063/1.1682673

Yang, 2013, Surface effects on the optical and photocatalytic properties of graphene-like ZnO:Eu3+ nanosheets, J. Appl. Phys., 113, 033514, 10.1063/1.4776225

Wu, 2001, Photouminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett., 78, 2285, 10.1063/1.1361288

Zhao, 2005, Deep-level emissions influenced by O and Zn implantations in ZnO, Appl. Phys. Lett., 87, 211912, 10.1063/1.2135880

Chen, 2013, Surface passivation effect on the photoluminescence of ZnO nanorods, ACS Appl. Mater. Interfaces, 5, 6354, 10.1021/am401418b

Agarwal, 2019, Gas sensing properties of ZnO nanostructures (flowers/rods)synthesized by hydrothermal method, Sens. Actuators B Chem., 292, 24, 10.1016/j.snb.2019.04.083

Lima, 2001, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater., 3, 749, 10.1016/S1466-6049(01)00055-1

Wang, 2009, Study on the defects of ZnO nanowire, Solid State Commun., 149, 1947, 10.1016/j.ssc.2009.07.038

Nikitenko, V. (2005). Optics and spectroscopy of point defects in ZnO. Zinc Oxide—A Material for Micro-and Optoelectronic Applications, Springer.

2000, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett., 85, 1012, 10.1103/PhysRevLett.85.1012

Schirmer, 1970, The yellow luminescence of zinc oxide, Solid State Commun., 8, 1559, 10.1016/0038-1098(70)90608-3

Kayaci, 2014, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density, Nanoscale, 6, 10224, 10.1039/C4NR01887G

Vanheusden, 1996, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett., 68, 403, 10.1063/1.116699

Bhaskar, 2009, Mechanism of green luminescence in ZnO, Indian J. Pure Appl. Phys., 47, 772

Agarwal, 2019, Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering, Sci. Rep., 9, 1, 10.1038/s41598-019-43184-9

Dahan, 1998, Properties of the intermediately bound α-, β- and γ-excitons in ZnO:Cu, J. Phys. Condens. Matter, 10, 2007, 10.1088/0953-8984/10/9/007

Look, 1999, Residual native shallow donor in ZnO, Phys. Rev. Lett., 82, 2552, 10.1103/PhysRevLett.82.2552

Vink, 1954, The origin of the fluorescence in self-activated ZnS, CdS, and ZnO, J. Chem. Phys., 22, 250, 10.1063/1.1740044

Chen, 2011, Origins of green band emission in high-temperature annealed N-doped ZnO, J. Lumin., 131, 1189, 10.1016/j.jlumin.2011.02.025

Hsu, 2004, Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods, J. Appl. Phys., 96, 4671, 10.1063/1.1787905

Choy, 2004, Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures, Adv. Funct. Mater., 14, 856, 10.1002/adfm.200305082

Dietz, 1963, Electronic structure of copper impurities in ZnO, Phys. Rev., 132, 1559, 10.1103/PhysRev.132.1559

Dingle, 1969, Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide, Phys. Rev. Lett., 23, 579, 10.1103/PhysRevLett.23.579

Reshchikov, 2008, Yellow luminescence in ZnO layers grown on sapphire, J. Appl. Phys., 103, 103514, 10.1063/1.2924437

Lv, 2019, Defect luminescence and its mediated physical properties in ZnO, J. Lumin., 208, 225, 10.1016/j.jlumin.2018.12.050

Zwingel, 1972, Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals, J. Lumin., 5, 385, 10.1016/0022-2313(72)90001-4

Cox, 1978, Exchange broadened, optically detected ESR spectra for luminescent donor-acceptor pairs in Li doped ZnO, Solid State Commun., 25, 77, 10.1016/0038-1098(78)90361-7

Alvi, 2010, The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes, Superlattices Microstruct., 47, 754, 10.1016/j.spmi.2010.03.002

Li, 2004, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl. Phys. Lett., 85, 1601, 10.1063/1.1786375

Reshchikov, 2009, Photoluminescence from ZnO nanowires, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 27, 1688

Greene, 2003, Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem. Int. Ed., 42, 3031, 10.1002/anie.200351461

Gomi, 2003, Photoluminescent and structural properties of precipitated ZnO fine particles, Jpn. J. Appl. Phys., 42, 481, 10.1143/JJAP.42.481

Leung, 2007, Defect emissions in ZnO nanostructures, Nanotechnology, 18, 095702, 10.1088/0957-4484/18/9/095702