Photoluminescence of MCM meso-porous materials
Tài liệu tham khảo
Kresge, 1992, Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism, Nature, 359, 710, 10.1038/359710a0
Polarz, 2002, Nanoporous materials, J. Nanosci. Nanotech., 2, 581, 10.1166/jnn.2002.151
Ciesla, 1999, Ordered mesoporous materials, Micropor. Mesopor., 27, 131, 10.1016/S1387-1811(98)00249-2
Sayari, 1997, Non-silica periodic mesostructured materials: recent progress, Micropor. Mater., 12, 149, 10.1016/S0927-6513(97)00059-X
Selvam, 2001, Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves, Ind. Eng. Chem. Res., 40, 3237, 10.1021/ie0010666
Zhao, 1998, Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study, J. Phys. Chem. B, 102, 556, 10.1021/jp972788m
Stathatos, 2001, Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films, Langmuir, 17, 5025, 10.1021/la0103620
Kim, 2001, Excited-state dynamics of 5,10,15,20-tetraphenyl-21H,23H-porphine manganese(III) chloride encapsulated in TiMCM-41 and MCM41; proved by fs-diffuse reflectance laser photolysis, J. Phys. Chem. B, 105, 8513, 10.1021/jp0116757
Chen, 2003, Arrays of (ZnMn)S quantum wires with well-defined diameters below 10 nm, J. Appl. Phys., 93, 1326, 10.1063/1.1530721
Tang, 1997, SiGe quantum dots prepared on an ordered mesoporous silica coated Si substrate, Appl. Phys. Lett., 71, 2448, 10.1063/1.120085
Govindaaraj, 2000, Studies of C60 and C70 incorporated in cubic mesoporous silica (MCM-48), Chem. Phys. Lett., 317, 35, 10.1016/S0009-2614(99)01363-9
Gimon-Kinsel, 1998, Photoluminescence properties of MCM-41 molecules sieves, Micropor. Mesopor. Mater., 20, 67, 10.1016/S1387-1811(97)00004-8
Glinka, 2002, Photoluminescence from mesoporous silica akin to that from nanoscale silicon: the nature of light emitters, Chem. Phys. Lett., 358, 180, 10.1016/S0009-2614(02)00400-1
Anpo, 2000, Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis, Adv. Catal., 44, 119, 10.1016/S0360-0564(08)60513-1
He, 1998, The very strong photoluminescence (PL) effect of mesoporous molecular sieve materials, Supramol. Sci., 5, 523, 10.1016/S0968-5677(98)00066-2
Shen, 2002, Red-light emission in MCM-41 meso-porous nanotubes, Solid State Commun., 122, 65, 10.1016/S0038-1098(02)00051-0
Glinka, 2000, Photoluminescence from mesoporous silica: similarity of properties to porous silicon, Appl. Phys. Lett., 77, 3968, 10.1063/1.1328364
Zhang, 2000, Photoluminescence of mesoporous silica molecular sieves, J. Appl. Phys., 88, 2169, 10.1063/1.1304929
Chang, 2001, Strong visible photoluminescence from SiO2 nanotubes at room temperature, Appl. Phys. Lett., 78, 3791, 10.1063/1.1370991
Glinka, 2000, Photoluminescence spectroscopy of silica-based mesoporous materials, J. Phys. Chem. B, 104, 8652, 10.1021/jp0009599
Kim, 2002, Synthesis of MCM-48 via phase transformation with direct addition of NaF and enhancement of hydrothermal stability by post-treatment in NaF solution, Micropor. Mesopor. Mater., 49, 125, 10.1016/S1387-1811(01)00410-3
Wang, 2000, Temperature control in the synthesis of cubic mesoporous silica materials, Mater. Lett., 45, 273, 10.1016/S0167-577X(00)00117-8
Schumacher, 1999, Novel synthesis of spherical MCM-48, Micropor. Mesopor. Mater., 27, 201, 10.1016/S1387-1811(98)00254-6
Zyubin, 2002, Red and near-infrared photoluminescence from silica-based nanoscale materials: experimental investigation and quantum-chemical modeling, J. Chem. Phys., 116, 281, 10.1063/1.1425382
Kalceff, 1998, Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide, Phys. Rev. B, 57, 5674, 10.1103/PhysRevB.57.5674
Skuja, 1998, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J. Non-Cryst. Solids, 239, 16, 10.1016/S0022-3093(98)00720-0
Skuja, 1994, The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2, J. Non-Cryst. Solids, 179, 51, 10.1016/0022-3093(94)90684-X
Zhang, 2002, Bright visible photoluminescence from silica nanotube flakes prepared by the sol–gel template method, Appl. Phys. Lett., 80, 491, 10.1063/1.1434309
Sun, 2000, Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser, J. Phys. Chem. B, 104, 3450, 10.1021/jp992828h
Zhao, 1997, Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA, J. Phys. Chem. B, 101, 6525, 10.1021/jp971366+
Inaki, 2002, Active sites on mesoporous and amorphous silica materials and their photocatalytic activity: an investigation by FTIR, ESR, VUV-UV and photoluminescence spectroscopies, J. Phys. Chem. B, 106, 9098, 10.1021/jp025768f
Devine, 1990, Defect pair creation through ultraviolet radiation indense, amorphous SiO2, Phys. Rev. B, 42, 2617, 10.1103/PhysRevB.42.2617
Griscom, 1998, Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica, J. Non-Cryst. Solids, 239, 66, 10.1016/S0022-3093(98)00721-2
Shen, 2003, Blue–green photoluminescence in MCM-41 mesoporous nanotubes, J. Phys.: Condens. Mater., 15, L297, 10.1088/0953-8984/15/20/101
Zhang, 1997, Photoabsorption and photoluminescence of divalent defects in silicate and germanosilicate glasses: first-principles calculations, Phys. Rev. B, 55, R15993, 10.1103/PhysRevB.55.R15993
Skuja, 1992, Isoelectronic seriesof twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study, J. Non-Cryst. Solids, 149, 77, 10.1016/0022-3093(92)90056-P
Pacchioni, 1997, On the origin of the 5.0 and 7.6 eV absorption bands in oxygen deficient α-quartz and amorphous silica. A first principles quantum-chemical study, J. Non-Cryst. Solid, 216, 1, 10.1016/S0022-3093(97)00221-4
Shen, 2003, Photoluminescence sites on MCM-48, Micropor. Mesopor. Mater., 64, 135, 10.1016/j.micromeso.2003.08.001
Anpo, 1980, Quenching of the photoluminescence of porous vycor glass by oxygen and ammonia, J. C. S. Faraday I., 76, 1014, 10.1039/f19807601014
Bol, 2001, Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 2. Enhancement by UV irradiation, J. Phys. Chem. B, 105, 10203, 10.1021/jp010757s